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PREFACE

The behavioral research conducted under the Naval Training
Equipment Center's Visual Technology Research Simulator (VTRS)
program consists of experiments to provide the basis for design
criteria for flight trainers. Because it is necessary to in-
vestigate the effects of a great many simulator features, much
attention has been given to the use of experimental methods
capable of handling complex multifactor problems. The author
of this report, Dr. Charles W. Simon, has devoted the past
decade to the study of means to improve the quality and useful-
ness of behavioral research through the use of methods that are,
in many respects, quite different from those typically used by
applied behavioral scientists. The critical difference is that
with the "new paradigm" (a term used by Simon to refer to the
philosophy, strategy and techniques he discusses), variables are
examined with a gradually increasing precision as more is learned
about their effects. The advantage is that the experimenter is
less constrained to investigate only a few variables at a time.
He is not forced to hold constant (or allow to vary in some un-
known way) other factors that may interact in important ways with
those under study.

The experimenter initially looks at many things with the
intent of screening out those which are trivial for a particular
task. The non-trivial factors are then investigated further
until ultimately a sufficiently precise equation is generated
and verified. With this approach it would often be possible,
with no increase in the amount of data collected, to obtain the
same amount of useful information on perhaps 50 variables and
their interrelationships as would ordinarily be obtained on five
variables using traditional methods. Predictions from the labor-
atory to the field can then be made with greater confidence, and
a quantitative data base is established which can be augmented
easily.

A report recently published as NAVTRAEQUIPCEN 77-C-0065-1
(Simon 1979) summarized the ways in which the methods he advo-
cates should be applied to the VTRS program. The present report
supplements that document by providing additional information to
aid in the design and interpretation of multifactor experiments.
The information presented here was required in preparation for a
screening experiment recently completed on aircraft carrier land-

tv0 ing performance. A description of this research will appear as
NAVTRAEQUIPCEN 78-C-0060-7. The practical implementation of the
techniques will be discussed in that report.

.. __ _ _ -. ,. - - - -
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There are many fields of experimental psychology for which
the approach advocated by Simon can result in more useful infor-
mation obtained at a lower cost. This report will therefore be
applicable to a wide range of research topics besides flight
training. Because it assumes that the reader is familiar with
Simon's earlier work, it should be regarded as a "companion piece"
to NAVTRAEQUIPCEN 77-C-0065-1, which provides much of the back-
ground information a new reader would require.

STANLEY C. COLLYER
Scientific Officer
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SECTION I

INTRODUCTION

The Naval Training Equipment Center has built a Visual
Technology Research Simulator (VTRS, formerly referred to as
AWAVS) composed of a cockpit, a wide-angle visual system, and
a six-degrees-of-motion system. These combine into a versa-
tile device for studying the effects of equipment parameters
in the context of pilot training. The large number of
parameters that must be investigated requires the use of
experimental methods that permit studying many factors
economically. A discussion of the philosophy, strategy, and
techniques being employed in mitch of the research conducted
on this program has been provided elsewhere (Simon 1979).

This report is made up of a series of individual papers
on different techniques needed to enhance the methodologies
that are to be used in the VTRS human performance experiments.
In the series of reports by Simon (1970 - 1979) on a new
paradigm for psychological research, the holistic approach to
systematic experimentation is proposed and the strategies and
techniques for accomplishing this are described. While the
basic tools required to employ the "new paradigm" (Simon, 1977b)
in the VTRS program are available, there are still techniques
that need to be understood in detail to supplement the use of
those described in the original documents.

As a part of this year's effort, supplemental procedures
for the design, analysis, and interpretation of economical
multifactor experiments were sought. The relevant ones are
described here. None is original with this investigator.
They have been included here to reduce the time required to
search them out, to read and collate related source material,
and to relate them to the "new paradigm." After using this
report to obtain a basic understanding of these techniques,
the reader is encouraged to read the original material.

The following techniques are discussed:

a. WHAT TO DO WHEN THE MODEL FOR THE EXPERIMENTAL
DESIGN INADEQUATELY REPRFSENTS THF EMPIRICAL DATA

i THE PROBLEM
ii LACK OF FIT TEST

iii TRANSFORMATION
iv AUGMENTATION

b. USING YATES' ALGORITHM WITH SCRFENING DESIGNS

c. ANALYZING RESIDUALS

9
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d. IDENTIFYING THE EXPERIMENTAL CONDITIONS IN 2 k-p

DESIGNS WHEN GIVEN THE DEFINING GENERATORS

e. AN ECONOMICAL DESIGN FOR SCREENING INTERACTION
EFFECTS

f. GRAPHIC METHOD AND INTERNAL COMPARISONS FOR
MULTIPLE RESPONSE DATA

g. THE PLACE FOR REPLICATION IN ECONOMICAL
MULTIFACTOR RESEARCH

h. THE SIGNIFICANCE OF TESTS OF STATISTICAL
SIGNIFICANCE

i. DETERMINING THE PROBABILITY OF ACCEPTING THE
NULL HYPOTHESIS WHEN IN FACT IT IS FALSE

j. TESTING NON-ADDITIVITY IN EXPERIMENTAL DATA
FROM A LATIN SQUARE DESIGN

k. HOW TO INCLUDE FACTORS WITH MORE THAN TWO LEVELS
IN A SCREENING DESIGN

1. ANALYZING EXTRA-PERIOD CHANGE-OVER DESIGNS

m. ANALYZING SERIALLY-BALANCED SEQUENCE DESIGNS

n. DESIGN ECONOMY WHEN EXPERIMENTAL FACTORS
SELECTIVELY AFFECT BI-VARIATE CRITERIA

RELATING THE CONTENT OF THIS REPORT TO PREVIOUS REPORTS

The new paradigm for research on equipment design developed
by Simon (1970-1979) emphasizes the importance of a multifactor
approach involving "all" critical parameters of a particular
task and provides the practical and economical strategies and
techniques for accomplishing this. Much of the material
written about the basic approach has been presented as if it
were a constant, unvarying process. In practice, however, the
comprehensiveness of the approach and the vagaries of humans
performing complex tasks in less than optimum environments
makes any "cookbook" approach inadequate. The investigators
must be prepared to handle variations upon the basic approach
and to deal with the complexities of the problem as it exists
in the real world. If they cannot, the holistic approach for
behavioral research will not be successful. The material
in this report is intended to supplement the material already
written in order to better prepare the investigator for con-
ducting experiments on VTRS and similar programs. The dis-
cussion below relates the sections in this report to previous
materials dealing with problems of design, analysis, and
interpretation.

10
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Design

The term "design," will be used here in the limited
sense, to refer to the selection of coordinates in a multi-
factor space where performance data is to be collected. In
the basic approach to economical multif actor experiments, data
is collected in blocks beginning with the points which form
designs of lower order so that a sequential build-up of designs
of increasing order will be possible. By testing after each
block of data is collected, the investigator can develop a
polynomial of appropriate order to be fitted "as close as
possible" to the true unknown response function while using as
few experimental runs as is consistent with otter objectives.
The basic design used in this approach is a 2 P fractional
factorial, which is modified to achieve the experimental goal.
Items a-iv, d, e, g, k, and n are concerned with some of the
most frequently encountered modifications.

After the design has been expanded to approximate a second
order model, it is uneconomical to collect -- if needed -- all
of the points required for a complete design of higher order.
Instead, the investigator must know how to augment the dataI
collection space with points that will isolate specifically
chosen sources of variance (Item a-iv). Sources that supply
unusual experimental data collection plans may provide only
the "defining generators," that is, a succinct coded descrip-
tion of the design. An investigator must know how to determine
which experimental conditions (i.e., the coordinates of the
experimental space) make up this design (Item d). Ordinarily,
investigators are interested in identifying which factors are
the most important and most designs -- particularly the
economical multif actor designs -- are constructed to reflect
this interest. When interactions are expected to be predomi-
nant and a large number of factors are being investigated, the
investigator who is familiar with an economical plan for
screening interaction effects can save much time and effort
(Item e). Most psychologists replicate basic experimental
designs almost automatically, whether or not it serves a useful
purpose and without regard for the extra data collection costs
involved. When large multifactor experiments are to be
performed with reasonable economy, the investigator must
understand when replicating is and is not necessary and what
more economical alternatives to complete replication are
available (Item g). While the two-level design is usually
suitable for most screening studies at the beginning of a
large multifactor investigation, there are times when the
investigator may wish to examine one or two factors at three
(or even four) levels when the first block or two of data is
being collected. He must be aware of when this is reasonable,
what alternatives are open to him, and if he decides to go
ahead, how to fit the three-level factor economically into
the two-level basic design (Item k). For truly holistic ex-
perimentation, multifactor experiments will commonly require
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multivariate criteria. The investigator should be aware of
those special circumstances when the experimental data
collection can be made more economical (Item n).

Analysis

Too often, the analysis of behavioral research data has
been limited to a routine, computerized treatment. This is
not sufficient when the data is as rich in information as that
which comes from a multifactor design. Furthermore, when
"economical" designs are used, it is necessary not only to
analyze for content, but also for data quality in order to
avoid potential misinterpretations. Items a-iii, b, c, and
f deal with topics related to the analysis of- such data.

In some cases, proper data analysis may be substituted
for the additional data collection required by a more complex
design. Before one adds a new block of data to isolate
higher order interaction effects as prescribed by sequential
design strategy described earlier, it is more economical to
examine transformations of the original performance data to
see if a simpler model can be effected without requiring more
data to be collected. With multifactor designs, the investi-
gator must be knowledgeable of special techniques necessary
to optimnize transformations across all variables (Item a-iii).
When 2 P designs are used as blocks in the sequential
strategy, using Yates' algorithm for data analysis can prove
to be more effective than computerized regression routines
when the number of factors aje more than the computer system
can handle. With complete 2 factorials, the Yates' algorithm
is easy to use; with fractional 2 k-p designs, including the
special case of the robust screening design, some translation
of the results is required. The investigator must be able to
make this translation in order to interpret his data (Item b).
Analyzing the residuals between obtained and estimated per-
formance scores provides valuable information for the
investigator who wishes to understand the quality of his data,
to decide what the next step in the experiment should be, and
to interpret the existing data. Most psychologists are not
aware of the usefulness of this type of analysis and should
be (Item c). Holistic research is expected to deal with a
complex world -- multiple independent variables and multiple
criteria. Graphic methods, so helpful in understanding data
from single-criteria experiments, can also be useful when
multiple criteria are employed. This latter analysis however,
is more complicated to perform and to interpret; the investi-
gator needs simplified explanations of both (Item f).

Psychologists have employed Latin square designs for
many years to isolate the effects of treatments, subjects,
and trials when the same subject is tested across all
treatments. At the same time, almost none have evaluated
their data to see if it meets the assumptions required to
use the design (Item j), nor have used the analysis to make

12
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full use of this data collection plan to isolate effects that
might be carried over from one treatment to the next, a
linear transfer effect (Items 1 and in). If one can justify
examining only linear transfer effects, this class of design
would be an economical means of studying transfer of training
using a small group of subjects or only a single individual.
Information on how to analyze these two types of designs is
not readily available nor always clear, and so it is provided
here (Items 1 and mn respectively).

* Interpretation

In addition to design and analysis, the third leg of
any research effort is the interpretation of the data. This
differs from the analysis since the former merely organizes
and summarizes the data while the latter considers the
practical implications of the results. Some aids to inter-
pretation can be found in the sections on design and analysis.

For the paradigm for large-scale multif actor research,
tests of-lack of fit are one means of deciding whether or not
enough data has been collected to write an equation that
adequately approximates the experimental space. This lack-of-
fit test should be made after each block of data of higher
order has been collected (Item a-ui). Because of the fanatic
and sometimes frenetic reliance that psychologists place on
"tests of statistical significance" in the interpretation and
evaluation of their experimental data, it is important that
the ways this test has been misused and misinterpreted be
understood by the practicing experimenter. A large number of
papers have appeared in the behavioral science literature
spotlighting these deficiencies, without, it seems, having
done much to reduce them. A summary of the facts and fallacies
that surround this procedure (Item h) should sensitize the
psychologist who uses this test to its limitations as well as
to the way it has frequently been misused.

The techniques described in this report are of limited
value in isolation. On the other hand, they are important
addenda to the material already discussed by Simon (1970-1979)
elsewhere and have specific applications for a properly
conducted VTRS program as well as similar research projects
in the future.

13/14
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SECTION II

WHAT TO DO WHEN THE MODEL FOR THE EXPERIMENTAL
DESIGN INADEQUATELY REPRESENTS THE EMPIRICAL DATA

THE PROBLEM

one desirable feature of a "good" experimental design
for mapping the response surface of an experimental region
is that it includes points which form designs of lower order
so that a sequential build-up of designs of lower order is

4 possible (Box, 1964). This feature greatly enhances the
economy of data collection since the information collected
early in the sequence can be used to identify critical
factors, permitting factors contributing only trivial
effects to be dropped before the response-fitting phase
begins. In general, it will be true that relatively few
factors will be needed to account for most of the perfor-
mance variability in a specific task. Quite frequently, a
Resolution IV design will provide nearly all of the infor-
mation required for factor identification and a second-oreer
design will adequately describe most response surfaces of
human performance. But what happens when either of these
statements are not true? What procedures must an investi-
gator employ then?

In the discussion that follows, alternative actions
available to an investigator when these situations occur are
described. Since the solutions for following up on screening
designs and for expanding the response surface involve the
same or similar considerations, these two problem areas are
treated together here.

Alternative Actions

Had the investigator anticipated the possibility that
higher-order effects might be present, he might have started
with a earticular experimental design capable of expaid-ii-n
to the desired order. Thus there are Resolution III, IV, and
V fractional factorials capable of being built from lower
order designs. Similarly there are second and third-order
response surface designs that can be built sequentially from
lower order designs. As a general principle, however,
Resolution V fractional factorials and sequential third-
order response surface designs tend to be uneconomical,
requiring more data collection than is probably necessary.
For this reason, it is less likely that the investigator -

even if he anticipates the need -- will prefer to employ
this alternative.

When a test of lack of fit reveals the presence of
higher-order effects not yet included in the polynomial, the
investigator should first inspect his data for deviant
values from irrelevant sources. Unusual values not
associated with the true intent of the experiment may occur
if a subject fails to respond in accordance with instructions,

15
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if equipment fails or otherwise "misbehaves," and if data is
recorded (or analyzed) incorrectly. These and similar dis-
turbances in the data can create results that mathematically
appear as higher-order interaction effects. Any such out-
liers therefore must be detected, not only to reduce the
chances of drawing erroneous conclusions but also to prevent
the tnvestigator from being misled into collecting more data
unnecessarily to isolate these quasi-interactions.

If there is no reason to suspect the accuracy of the
data, the investigator may consider transforming the data to
reduce or eliminate higher-order effects before coinsidering
the less economical approach of collecting more data.
Psychologists have more frequently employed data transfor-
mations to meet the assumptions of statistical analysis than
they have to simplify the regression model. If a simpler
model can be effected with transformations so that higher-
order effects are for all practical purposes eliminated, then
the amount of data needed to approximate the correct model
is reduced. The difficulty in applying this approach is in
selecting the proper transformation or transformations. Then,
too, some types of non-additivity can never be eliminated
with transformations. *

When transformations fail to simplify the data, the
investigator has no other choice but to collect additional
data to isolate the effects that account for the lack of fit.
Exactly what is best to do in this case is not always obvious
when economy must be a primary consideration. It takes a
considerable amount of additional data to change a
Resolution IV screening design to Resolution V. No standard
methods are available to expand a second-order central-
composite design when the need for a third-order model is
indicated. However, there are procedures for selecting a
limited number of data points that will isolate only the
effects of greater interest.

major topics to be discussed in the sections that
follow include:

0 Lack of fit tests

* Multivariate transformations

0 Augmentation techniques

*An ounce of prevention is worth a pound of cure.
Selecting the scaling should be a major effort of the pre-
experimental planning phase.

16
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TESTING THE FIT OF THE MODEL

In the 2 kp screening design, lack of fit refers to the
need to include interactions in what otherwise would be a
first degree polynomial. Their presence may be inferred when
a string of interactions in the Resolution IV designs shows
a non-trivial effect.* There is no need to test for curva-
ture during the screening phase since the factors are only
at two levels. Since these designs are not replicated there

* are no degrees of freedom for extimating error. However, a
test of the statistical significance of potentially inter-
esting effects can be approximated using order normalized
plots and estimated error variances (Daniel, 1%76; Simon,
1977a).

With quantitative factors, the goal ultimately will be
to estimate a response surface. Lack of fit tests are needed
to see if the completed screening data, a first degree
polynomial plus critical interaction terms, adequately fits
a linear surface or whether the curvature of the surface
must also be accounted for. To determine whether quadratic
terms are needed to approximate the response surface, it is
necessary to add center points to the screening design. If
it can be anticipated that this step will eventually be
taken, it is better to do so when the screening data is
being collected, rather than later (Simon, 1977a).

To determine whether or not quadratic terms are needed
to fit the response surface, the investigator would compare
the average performance of all points in the hypercube
against the average performance at the center, i.e.,

xhc xc

This measure of overall curvature is equal to the sum of the
estimated coefficients of the quadratic terms. Whether or
not it is larger than would be expected by chance is
determined by the magnitude of its ratio to the estimated
error.

To determine whether a second degree polynomial is
adequate, tests can be made in the conventional manner. The
sum of squares for a lack of fit term (with one degree of
freedom) can be obtained by subtracting from the total sum
of squares all of the sums of squares for linear, quadratic,
and interaction terms, along with the sums of squares for

* The investigator must also be alert to the possibility
that within a string two large effects with opposite signs
could yield a trivial sum.
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center points (error) and blocks -- if present. An F ratio
of overall lack of fit variance to error variance can be
obtained. Draper and Herzberg (1971) describe a way of
partitioning this overall estimate into lack of fit due to
interaction and that due to cubic effects (see Simon, 1977a,
pp 169-171).

Box, Hunter, and Hunter (1978, pp 522-523) show a short-
cut method of testing the adequacy of the second-order model.
They point out that "if the surface is exactly quadratic in
this direction (of a single dimension], it can be shown that
the estimate of slope obtained from the axial points [of
that dimension) will be the same as that obtained from the
factorial points [of that dimension]." The slope, m, of a
line is equal to

yM - Y 2 .
x 1  x 2

Let us use this to test whether the second-order central-
composite design adequately fits the data or if there is a
third-order component.

To obtain the slope of the axial (star) points (m a), we
substitute:

Y. = the performance at axial point +a x 1

Y2 = the performance at axial (star) point -ax.
1

xI = the coded value of -a
1

2 = the coded value of x
1

To obtain the slope for the factorial (cube) points (mf), we
substitute

Yj = the average performance at factorial points
+1xi

Y2 = the average performance at factorial points
-1-x i

and

x 1= the coded value +1

x2 = the coded value -1

18
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The difference between the two slopes,

(ma - mf)

supplies an estimate of the sum of the third-order coeffi-
cients, i.e.,

Ziy2

where y may equal both i and non-i and i equals each of 1 to
K factors. In the third-order polynomial these are the

combined coefficients for third degree terms,

x.x2 and x3

t "
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TRANSFORMATIONS TO REDUCE LACK OF FIT

When the derived polynomial fails to fit the data and
there are not enough degrees of freedom remaining to expand
the model (as is the case with classic second-order central
composite designs and 2 -P screening designs), the investi-
gator should first try to simplify the relationship by
transforming the data. This is not a completely foreign
procedure to psychologists who have used logarithmic trans-
formation to linearized the relationship between psycholo-
gical and physical scales. If the response surface of the
transformed data can be approximated by a lower-order poly-
nomial than had been possible with the untransformed data,
then there will be no loss of information and the cost of
collecting additional data will have been avoided. The
investigator faces the task of deciding what is the best
transformation to use.

Selecting a transformation is not a simple task. Too
often the process has been oversimplified and treated in
cookbook fashion. Sometimes simple generalizations are made
verbally, such as: "A reciprocal transformation should be
used when reaction-time scores are involved." In other
cases, the arithmetric relationship between the mean and the
variance of the data is used to select the transformation,
e.g., "When the variance (s2) equals the mean multiplied by
some constant, (kM), a square root transformation should be
used". These are monotonic transformations; that is, they
handle relationships with "one-bend" in them. Few
psychologists ever consider "two-bend" transformations, the
one exception being the arcsin transformation for handling
percentaqe data. The most limiting feature of this type of
treatment of transformations is that they deal only with the
one-independent, one-dependent variable case.

The selection of transformations becomes more compli-
cated when there are multiple independent variables. If
their relationships with the dependent variables differ, we
will not be able to transform the response data but must
find the appropriate transformation for each independent
variable. This, however, will destroy the orthogonality
among the independent variables. Additional problems can
arise if the transformation destroys the normality of the
distribution and/or the homogeneity of the variance. Luckily,
many transformations that correct one deficiency in the
data correct another; still it is important to realize that
this is not always the case.

More sophisticated treatments of data transformation
have noted that what are often viewed as independent methods
of modifying the data, e.g., reciprocal, logarithmic, square
root, square, and others used with monotonic data, are
actually members of a common family that can be represented
by a single equation, which varies the "strength" of the
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transformation as parameters of the equation are changed.

Box and Cox (1964) present one such general transforma-
tion equation

yl- 1

W

log y (X =0)*

where y is the response data and lambda (A) is the parameter
to be varied. As lambda takes on the values from -1 to +1
(and the range can be greater), the equation becomes equi-
valent to a number of transformations commonly employed by
psychologists (see Table 1).

TABLE 1. RELATION A14ONG COMWON MONOTONIC
TRANSFORMATIONS, SIGMA-MEAN RATIOS, AND LAMBDA

Transformation Relation Lambda Application

Reciprocal s = kM2  -1.0 Reaction time

Reciprocal s = kM-3/ 2  0.5square root

Logarithm s = kM 0 * Positively skewed

data; sigma

Square root s 2= kM +0.5 Frequencies

No transfor- +1.0
mation

*This is a convention that allows a plot of results
against lambda to be continuous.
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A Practical, Empirical Approach to Multivariate Transformation

Draper and Hunter (1969) propose a rather straight-
P forward data-inspection technique for selecting the desired

transformation of the dependent or independent (or both)
variables. Their procedure takes advantage of a high-speed
computer to analyze the data after different transformations
have been effected. The desired transformation would be
selected after a visual inspection of the results from these
several analyses are properly plotted.

To systematize this process, Draper and Hunter made use
of the equation for the family of monotonic transformations
developed by Box and Cox. A computer is programmed to
iteratively change the value of lambda in the equation in
regular increments and to perform an ordinary analysis of
variance after each transformation.* The results are
plotted on a graph with lambda values along the abscissa and
the results of the ANOVA along the ordinate. All sources of
variance are plotted on the same graph. Since lambda can
take on any value, the plots at the different lambdas can be
connected into a continuous function. Given these functions
the investigator can select the value of lambda (and thus
the transformation) that best meets his requirements.

To illustrate this procedure, several examples taken
from Draper and Hunter's paper will be described briefly.
The reader is encouraged to refer to the original paper for
additional details.

In their first example, they show how a transformation
of the dependent variable can be selected to eliminate an
interaction. From the data collected in a two-factor, 3 x 4
factorial design, mean squares and F-ratios are determined
for main effects A and B and their interaction AB. The error
variance is also obtained. Using the Box and Coxc equation,
Draper and Hunter transform and analyze their data using all
conditions of lambda between -2 and +1.2 in steps of .01.
Next they plot against lambda the magnitudes of the F-
ratios"* for the three effects. They also plot a measure of
"inhomogeneity" to see if the evenness of the within-call
variances is disturbed severely by the transformations (see
their Appendix, pp 38-39, for the equations needed to

*There is no reason why other transformations might
not be employed.

** The F-ratios should be used whenever the dependent
variable is transformed, since each transformation of y
yields a different total sum of squares. This is not the
case when only the independent variables are transformed;
then a plot of the mean squares is appropriate.
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calculate this measure). The complete plot is shown in
Figure 1. Inspection of this figure reveals the lambda (andI thus the transformation) that minimizes the interaction,
maximizes factor effects, and keeps the inhomogeneity within
acceptable bounds.

In this example, Draper and Hunter decided to consider
inhomogeneity values lying within the 95 percent one-tail
confidence limits. This places the candidate lambda between
-1.75 and -0.53. The two main effects are maximized at
-1.35 and -1.25, respectively, and the interaction is mini-
mized at approximately -0.60. They recommend a lambda of
-1.00 as a sensible compromise. Inhomogeneity at this point
is not a minimum, but it is not excessively high. A lambda
of -1.00 in the Box and Cox equation means that a reciprocal
transformation should be used.

In their second example, Draper and Hunter show how they
selected a transformation to linearize the results of a 33
factorial experiment analyzed by "standard response surface
methods." In this case, the total variance is partitioned
into linear, quadratic, and residual variances. To find the
transformation of the dependent measure that would enable the
three dimensional surface to be represented by a first-order
equation, they plot the F ratios for the linear and quadratic
terms against values of lambda. They suggest that since the
goal is to maximize the linear component and minimize the
quadratic, one might also plot the ratio of the linear mean
square over the quadratic mean square against lambda. In-
spection of the graphic plot (Figure 2) shows that when this
ratio is maximum, the lambda is essentially zero which means
the desired transformation is logarithmic.

In a third example, Draper and Hunter illustrate how
this graphic method can be used to select a transformation
if both independent and dependent variables are transformed.
They state as a general principle that when multiple
variables are to be transformed, it is not appropriate to
transform the variables one at a time, an often used method;
instead all must be transformed simultaneously (see Hill,
1966). The particular data used for this example was from
an undesigned experiment. The problem was to fit the data
with the simplest form of the regression model of the form

E(w) = a c'

where w is the Box-Cox transformation with X the unknown.
In this case the equation was modified; (y+l)X was substi-
tuted for yX. Since both independent (y) and dependent (x)
variables must be transformed, we must determine the values
of two unknown transformations, a and X. The sum of squares
for this model can be partitioned into that due to the
regression, the lack of fit, and pure error. We need to find
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the minimum ratio of the mean square for the lack of fit over
the error variance, that is, the minimum F-ratio for lack of
fit.

Figure 3 shows a contour plot of the F-ratio (1) for
lack of fit plotted on a two-dimensional graph of alpha
versus lambda. Draper and Hunter also calculate the measure
of inhomogeneity for the lambda dimension; the vertical lines
show the acceptable region for this measure. The preferred
transformation is where the lack of fit contour is at a
minimum. This is located where lambda equals one (signifying
no transformation) and alpha equals 1.5. Thus the simpler
model is

3

E(y) Sx

to provide an additive representation of this set of data.

Draper and Hunter make several general suggestions
regarding the use of this graphic plot technique for select-
ing transformations. First, since there are usually a band
of choices that can be made, better decisions can often be
made given several sets of data collected on the same
problem. Second, while the empirically-derived transforma-
tions have a pragmatic value and can be found, they must
not totally divert attention from eventually developing a
theoretically-based model. [Simon says: That may be easier
to do in the physical than in the behavioral sciences.]
Third, and most important, they recommend that once a trans-
formation has been selected and the data analyzed, it be
subjected to a residual analysis (see Daniel, 1976; Draper
and Smith, 1968; Box, Hunter, and Hunter, 1978). This
residual analysis is first performed on the transformed data
using the higher-order polynomial model. Then if it appears
that the -simpler model is appropriate, the transformed data
is reanalyzed with the higher-order terms omitted and the[
residual analysis is repeated on these results. Finally,
they suggest that a degree of freedom should be removed from
the residual for each parameter that is transformed.

It should be noted in closing that transformation will
not simplify all forms of data. When interactions are dis-
ordinal (or intrinsic), they cannot be eliminated by trans-
forming the data. Transformations will only simplify ordinal
interactions and curvilinear effects. Luckily, these occur
the most frequently in human performance data, and so trans-
formations do much to reduce the need to collect additional
data when lack of fit occurs.

When interactions are eliminated by means of data trans-
formation, care must be taken not to misinterpret the results.
If a critical interaction effect, found in the original
analysis, is no longer found after the data has been trans-
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Acceptable region based on
measure of inhomogeneity

'V 2.5

0

*-1.5 -1 0 1 1.5

Figure 3. Plot to Select Transformations when Changing Both
X and Y*
[From Draper & Hunter (1969)]

*a is transformation for X, and A is transformation for Y.
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formed, there is no contradiction in the true interpretation
of data. It is not enough to say, as too many psychologists
do, that there is or is not a statistically significant
interaction without relating it to the measurement scale that
is involved. Results of psychological experiments are
"situation specific", and this includes the characteristics
of the data and its analysis as well as those of the subjects,
equipment, environment, and time dimension.

28
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AUGMENTATION

When transformations fail to simplify the data to the
level at which it can be approximated adequately by a lower-
order (i.e., 1st or 2nd) model, additional data must be
collected. There are a number of occasions as the sequen-
tial development of the "new paradigm" unfolds when the
investigator will be faced with the problem of deciding what
augmentation data collection plan he must use.

There are two occasions on which the augmentation design
is fairly stereotyped and can be derived rather mechanically.
These are:

1. When the second block must be added to the
original Resolution III screening design in
order to isolate main from two-factor
interaction effects (see Box and Hunter, 1961;
also Simon, 1973, pp 105-116).

2. When axial points must be added to the hyper-
cube of a central-composite design in order to
approximate a second-order response surface
(see Box and Hunter, 1961; also Simon, 1970;
1973, pp 131-139).

There are, however, other occasions when more data must be
collected but the rules for selecting the data points are
less well-defined. The investigator in these cases must
exercise his judgment and skill. The more important of
these occur in three segments of the research program.
Additional data may have to be collected:

1. To isolate critical two- or three-factor disordinal
interactions from strings obtained from a
Resolution IV design during the screening phase.
This augmentation is necessary to avoid the
risk of ignoring influential factors, the
effects of which might be found in their
interaction with one or more other factors.

2. To isolate all critical two-factor inter-
actions aliased in strings of a Resolution IV
design when screening data is to be used to
complete the "hypercube" portion of a central-
composite design. If all critical two-factor
interactions are isolated from main effects and
one another, then the plan is equivalent to a
complete Resolution V design in which all two-
factor interactions are isolated from mi~n effects
and one another. This equivalence is achieved
with a reduced data collection effort. This
reduced design will be referred to as a
Resolution V- design.k 29
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3. To isolate third-order terms when the second-
order model does not adequately fit the
response surface. This is necessary to minimize
the prediction bias based on an inadequately
developed polynomial.

So for whatever reason one isolates the interactions in
strings, more data most be collected. The goal is to do
this as inexpensively as possible. Two basic approaches
are employed: 1) To isolate all interactions within the
string, or 2) To attempt to "guess" which interactions are
critical and probe with a few data points to verify the
hypothesis. Which approach will be used depends on:
1) A priori information regarding potentially important
interactions; 2) The length of the aliased strings; 3) The
cost and time restrictions on further. data collection;
4) The precision with which the effects must be estimated;
and 5) The damage that could occur if an effect is neglected.

Isolating All Interactions within a String

Techniques for isolating all the interactions within a
string have been described by Box, Hunter, and Hunter (1961)
and Daniel (1976). The example that follows was taken from
Box, Hunter, and Hunter's book (1978, pp 414-416). First
the method of selecting the new experimental conditions is
described; then an example is given to show how the new data
is combined with the data from the original block.

We shall assume that data has already been collected to
complete a 28-4 screening design in which there are eight
candidate faffors and 16 experimental conditions. The design
was actually composed of a Resolution III design plus its
fold-over. The values of the mean, the eight main effects
(aliased with three-factor interactions), and seven strings
of four two-factor interactions are all given in Table 2.
Among the effects, Factors C, E, and H appear critical along
with the two-factor interaction string, (AE). This string
represents the combined effect of the four aliased inter-
actions: (AE + BF + CH + DG).

To select the conditions required to isolate the inter-
actions, N additional conditions are required to form an
orthogonal block for isolating N interactions in the string.
In our example, N = 4. A pattern of signs in an inter-
actions-by-conditions matrix must be determined that satisfy
the orthogonality requirement. One such pattern is shown on
the left side of Table 3. If the interactions have these
particular signs for each condition, then the main effects
must have signs such as those shown on the right side of the
same table.
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TABLE 2. CONTRIVED RESULTS FROM BLOCK I DATA

A B C D E F G H
-. 7 -. 1 5.5 -. 3 -3.8 -. 1 .6 1.2

(AB) (AC) (AD) (AE)* (AF) (AG) (AH) Mean
-. 6 .9 -.4 4.6 -. 3 -. 2 -. 6 19.75

[*(AE) = AE + BF + CH + DG]

TABLE 3. SELECTING THE CONDITIONS TO
ISOLATE INTERACTIONS IN STRINGS

Interactions to be Block of conditions capable
isolated of isolating the interactions

to left

AE BF DG CH A B C D E F G H

1) - - + 1) - + + + - - - +
2) + + - - 2) - + - . .+ + +
3) + - + - 3) + + - - + - - +
4) + + + + 4) + + + + + + + +

TABLE 4. SIGN PATTERN AND RESULTS FOR CRITICAL
EFFECTS OF THE AUGMENTATION BLOCK

...Critical Effects .... .... Results...
M C E H AE BF DG CH Y Y YE'

Coefficients 2.75 -1.9 .6 h string effect = 2.3]
from Block I

Run 17 + + - + + - - + 29.4 24.15 3.2

Run 18 + - - + + + - - 19.7 19.95 -1.0

Run 19 + - + + + - + - 13.6 17.65 -3.3

Run 20 + + + + + + + + 24.7 23.25 2.3
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Neither set of signs are unique, but all must satisfy
the relationships found between the main and interaction
effects. Thus, if we make the sign of Factor A a minus
(actually a -1), then in order to have the sign of AE inter-
action a plus (actually +1), it is necessary that E also be
assigned a minus. Similarly, if BF is to have the sign of
minus in the first condition, then either B must be plus and
F, minus, or vice versa. In this example, the former
pattern was used. Once the signs have been determined for
all of the main effects, the experimental condition can be
identified by letters with the plus signs. For the first
condition in the example in Table 3, therefore, with B, C,
D, and H showing the plus sign, the experimental condition
will be designated bcdh, indicating which factors are to be
set at the high (or +1) level for that condition.

To combine old and new data, let us construct Table 4.
We will begin by calculating the coefficients for the Block
I (original) data. These are equal to one-half of the value
of each effect. Thus the effect of Factor C equals 5.5; its
coefficient equals 2.75. Since the effects have not yet
been isolated, we cannot know the coefficients for the
individual interactions in the string; only the coefficient
for the combined string can be determined. In this example,
it would be one-half of 4.6, or 2.3. These values along
with the appropriate sign pattern are laid out for the four
additional runs, numbers 17 through 20, as shown in Table 4.
To the right of this table are three columns, designated Y,
Y', and Y".

Column Y contains the performance score obtained for
each of the four new runs. (Incidentally, note that for Run
20 the signs of the interactions in the string are all plus,
corresponding to the levels in the original string.)

Column Y' contains the values after the Y values have
been corrected for the known main effects. Using Run 17 to
illustrate this step, we substitute coefficients and terms
in the following equation:

Mean + 8 cC + EE + 8 HH + 8(AE)0.5(AE) = Y

thus

Mean + (2.75)(+1) + (-1.9)(-l) + (.6)(+1) + [0.5(AE)] (+i) = 29.4

and consolidating these values, we obtain:

Mean + [0.5(AE)] = 29.4 - 5.25

or Yi7 equals:

Mean + [0.5(AE)] = 24.15
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The technique described above can be used to isolate
three-factor interactions in strings in the same way it was
used to isolate the two-factor interaction effects in
strings.

Augmenting Designs with Incomplete Blocks

The investigator may, for various reasons, not wish to
add a complete block of new data. In a screening design or
the factorial portion of the central-composite design, he
may want to use only a few additional data points to probe
and crudely test his hypothesis that a particular inter-
action within a string is accounting for most of the observed
variance within the string. Too much "guessin~g" of this
sort can turn out to be more expensive than a more formal
approach, but it must be considered as a viable alternative
when there are a great many effects within strings and when
the clues are available and strong (Simon, 1973, pp 112-115).

In the case of a response surface, an investigator may
wish to add some data points where the slope of the surface
is steepest, and/or changing rapidly, to improve the pre-
cision of the estimates. Or he may wish to add star points
in one corner of the original fractional factorial plan to
develop a non-central composite design.

In both cases, adding only a few points will often
destroy the orthogonality of the design, a condition that is
more important in the identification phase than in the
response surface phase of the research. In the latter case,
we have little interest in individual factors or their
effects and are concerned primarily with the overall shape
of the multifunction surface. A regression analysis can be
used to incorporate the new data into the earlier data. If
it is important, a few additional points might be employed
to improve the orthogonality using the technique proposed
by Dykstra (1971; also see Simon, 1975, pp 26-30).

When new conditions are tested at periods of time far
removed from that when the original data was collected, one
must be careful of shifts in the performance level due to
external irrelevant sources. Orthogonal blocking techniques
would ordinarily be employed to handle these situations.
Where complete blocks are not involved, however, we might
follow Hebble and Mitchell's (1972, p 771) suggestion of
using a blocking term in the regression equation which
already has a constant, $0, in the model. A "dummy variable"
is created by assigning a zero value to each condition in
the original design and a value of one to the new conditions.
Regression techniques would be used to analyze the combined
data. When this is done, the model for the original design
is unchanged by the introduction of the blocking variable.
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Values were not substituted for the Mean nor for the
coefficient of the (AE) string; this latter remains rep-
resented by the value, 0.5(AE), or one-half the (AE) effect,
multiplied by the appropriate plus or minus term, which in
the case of Run 17, is +1.

The new mean is calculated using Run 20 Y', where the
signs are-- _iplus. Substituting in the following equation:

Mean + 0.5(AE) (+1) = Run Y'

thus

Mean + 2.3 = 23.25

or

Mean = 23.25 - 2.3 = 20.95.

Column Y" in Table 4 is obtained by subtracting the
Mean value from each value in Column Y'.

The values in Column Y" can be used to estimate the
effects of the individual interactions, either by summing
them according to the sign matrix for each interaction or
using Yates' algorithm (see Simon, 1977a). The sign pattern
for the interactions shows that they are ordered according
to Yates' standard order. Thus the calculations with
Yates' algorithm would look like this with the values in
Column Y":

Step Effects- Effect
Run # Y" Data #1 Sum Effects Name

17 3.2 2.2 1.2 .6 AE

18 -1.0 -1.0 1.4 .7 BF

19 -3.3 -4.2 -3.2 -1.6 DG

20 2.3 5.6 9.8 4.9 CH

It is apparent that interaction CH accounted for most of the
observed effect of the string and that interactions AE and
BF are probably trivial.
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It is difficult to conceive of a data collection plan
that can't be orthogonally blocked to some extent since
pairs of observations can be selected to be some fraction --
however small -- that is an orthogonal block to the original
set of data. Dykstra (1966, p 279) suggested that thecoordinates of each pair of new observation points should
equal the average of the original block.
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SECTION III

USING YATES' ALGORITHM WITH SCREENING DESIGNS

Yates' algorithm (Simon, 1977a, pp 66-71; Davies, 1967,
pp 263-265; Box, Hunter, and Hunter, 1978, pp 323-324; Yates,
(1937) provides a convenient way of analyzing 24 and 2k-p

designs with or without the use of a computer. With screen-
ing and other fractional factorial designs, the use of this
algorithm is complicated because of the requirement to list
conditions and the effects in Yates' standard order since
with these designs all conditions of the factorial are not
used and the experimental effects are aliased in sets.

This complication is even more evident in the case of Simon's
screening designs robust to trends (Simon, 1977a, pp 13-24).
How Yates' algorithm is used to analyze a trend-robust
screening design is explained below.

DETERMINING THE "STANDARD ORDER" OF THE EXPERIMENTAL
CONDITION

In Table 5, an example of Simon's trend-robust
screening design is shown, i.e., a Resolution IV 28-4 design.
To use Yates' algorithm, the experimental conditions must be
listed in the "Standard Order": (1), a, b, ab, c, ac, bc,
abc, d, and so forth. The conditions in Table 7, however, are
aefg, bcdh, bcfg, and so forth. How do we reconcile the two
lists and place the conditions used in the experiment in the
standard order?

This is accomplished by ignoring the new screening de-
sign labels and corresponding names for the experimental
conditions (e.g., aefg, bcdh,... (1), abcdefgh) and think in
terms of the original factor labels. Remember, every frac-
tional factorial has the same sign matrix a I a complete
factorial for fewer factors. Thus this 28- design has the
same sign matrix as a 2 factorial, although in this case
the columns have been rearranged. To find the names of the
conditions for the original design, we first find columns
representing original factors A, B, C, and D. These are
easy to identify by the alternating -+ pattern for A, -- ++
pattern for B, ----++++ pattern for C, and so forth. These
columns are used to reconstruct the original names of the
conditions. For example, take new experimental conditions,
aefg, the first row of the matrix. Look for for the signs in
that row associated with original factors A, B, C, D, which
in this design are -, -, -, -, respectively. This new aefg is
therefore the original (1) condition. Take row two witf
the new condition label, bcdh, and find the signs in that
row for original factors A, B, C, D. This time the signs
are +, -, -, - which is original experimental condition a.
This process of finding the original condition labels from
the signs associated with the original factor labels would
continue until complete. (Note: While in this example, the
conditions turn out to be in the standard order as listed,
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TABLE 5. 28-4 TREND RESISTANT SCREENING DESIGN

TEST EXPERIMENTALSCRF N I iG n .N LA L1 5
OEER CONDITION (MA N EFFECTS)* (Two-FACTOR INTERACTION STRINGS)"

(1) A B C D E F G H AH AG AF AE AD AC AB
1 AEFG + + - - + + + .+ + + -
2 BCDH + - + + + - - - + + + + -
3 BCFG 4 .- + + - - + + + - + 4 -

4 ADEH + + - + + - - + + - + +
5 BDFG + - + - + 4 - + + - + +
6 ACFH + + - + - - + - + - + +
7 ACDG + . 4 . - + - + - + +
8 BEFH + - + - - + + - - - + +
9 CoD + - + + + + - + - +

10 ABGH . + 4 - - - + + + + - - .
11 A DF + + - + + - - + - + -
12 CEGH + - - 4 + - - + - +
13 ABCE 4 + 4 - + . . .. + + +
14 DFG + + - + - -4 + +is (1) + ... + + + + +
16 AArn4 +H I + + + + + + + + + +

ORiGNAL FACTORIAL LABELS - 03
C -, (- 3

_______ _______ I- - A . - . . .

*Three-factor interaction strings aliased with main effects.
•*Two-factor interaction strings aliased with other two-factor

interactions.

this need not always be the case and the investigator must

determine it for each fractional factorial.)

APPLYING YATES' ANALYSIS TO THE DATA

In accordance with Yates' algorithm, the performance
scores associated with each original label condition are
listed in the standard order and the analysis is performed.
Each effect or coefficient derived from the analysis is
then identified, i.e., Mean, A, B, AB, C, AC, BC, ABC, D,
etc. by listing the original factor labels in standard order.

SUBSTITUTING IEW EFFECT LABELS FOR ORIGINAL EFFECT LABELS

We relate the new labels in the Table 5 design to the
original labels simply by replacement. In our example, we
replace original factor label A with new factor label H,
replace B with AD, AB with E, C with AC, AC with F and so
forth.
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SECTION IV

ANALYZING RESIDUALS

When economical multifactor designs are used, the
investigator needs all the help he can muster to make certain
that he is interpreting the data properly. Residual analysis
is useful for this purpose.

Residuals are the unexplained variance in experimental
data. A residual is the difference between an observed and
a predicted score, the prediction being obtained from the
regression equation derived iror the data itself. Ideally,
residuals have a zeto mean, a normal distribution, a constant
variance, and are independent of one another. Too much
deviation from these ideals can distort the true interpreta-
tion of results based on analyses in which these conditions
are assumed to be true. Inspection of the residuals can
help the experimenter evaluate and interpret his data and
decide what the next step in the analysis shou.d be. Tech-
niques for analyzing residuals have been discussed by
Anscombe and Tukey (1963), Box and Cox (1964), Draper and
Smith (1968), Daniel and Wood (1971), Wood (1973), Daniel
(1976), and Box, Hunter, and Hunter (1978).

CALCULATING RESIDUALS

While predicted values may be determined individually
by the direct uso of the regression equation, use of the
reverse Yates' algorithm i perhaps the quickest way to
perform this task when a 2 or 2k  experimental design has
been employed. This technique has been described by
numerous authors (Box, Hunter, and Hunter, 1978, p 344;
Daniel, 1976, p 19; Hunter, 1966, Simon, 1977a, pp 78-79).
Each predicted performance value is then subtracted from the
observed performance value of each corresponding experi-
mental conditions to obhtin the residuals.

APPLICATIONS OF RED.IUUAL ANALYLE1S

Residual analysis may be used to:

1. Check how well the data meets the assumptions of
normality and zero mean. A frequency plot of the
residuals or an ordered plot on normal probability
paper (see item 4 below) will indicate how close
the residuals are to being normally distributed
with zero mean. Since finite data will show
variations from the ideal, some experience is
needed to interpret these plots. Daniel and
Wood (1971, Appendix JR) and Daniel (1976, Appendix
6A) illustrate how stich fluctua.tions might appear
if due to chanco alone.
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2. Check how well the data meets the assumptions of
homogeneity. A r'yt of the residuals against the
estimated values -r the independent variables can
reveal when the variance is not constant, being
larger for some variables than others. When there
are too many independent variables, graphic plots
will be difficult to interpret unless subsets
of variables are examined.

3. Calculate the precision of the fitted estimate.
The residual variance is considered to be the
"error" variance of both the ANOVA and regression
models. The residual variance is calculated by 2
dividing the residual sum of squares, (Yi - Yi) ,

by (N-K-l), where Y. is the observed response and
Y. is the predicted response at condition i, N is
tie total number of observations, and K is the
number of factors being isolated. The standard
deviation is the square root of that value; it can
be used to calculate confidence limits. The
standard error of the statistic is the standard
deviation divided by the square root of (N-K-2).
If the ratio between the residual sum of squares
and total sum of squares is subtracted from one,
the result equals the multiple correlation squared,
or the proportion of variance accounted for by
the terms of the regression equation.

4. Detect outliers and errors in data collecting,
recording, and/or calculating. Ideally residuals
should be distributed normally with a mean of
zero. In an ordered plot on normal probability paper,
the i-th value from the bottom, z., is plotted
against a value, a.1 *, chosen to be typical of
the i-th value fro!/Rhe bottom in a sample of n
from a unit normal distribution. When the plot fails
to follow a straight line, deviant individual
measures may suggest that something unusual has
occured and should be explained.

*The value of a. , represents the r.cobability point on
the normal probabili nscale for the i-th position of n data
points. It has been calculated in different ways. Daniel
(1978) used the equation

ai/n = (i - 0.5)/n

While Anscombe and Tukey (1963, p 145) suggest that
ai/n = (3i - l)/(3n = 1)

is a "shade better" calculation. For n = 15, this would
locate the 12th point at the .767 probability point using
Daniel's calculation and .761 using Anscombe and Tukey's.
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Anscombe and Tukey propose plotting a variation
on the usual graphic plot of residuals, in order
to discover outliers and errors. They write (p 145):
"If z represents the median of the z's, plotted at

(0, ), then the slope of the secant leading from
(0, z) to (a i/n, zi ) is

i/n 1

1
ai/n

and may usefully be calculated for i's sufficiently far
from the median. (Omitting the middle third of the i's
seems satisfactory.) An exactly straight line for the
cumulative on normal probability paper corresponds
to exactly constant values for these slopes. A plot
of (z. - z)/a /, against i is thus quite revealing..."
By wa of ill ration, they suggest that the plot
would show the following characteristics for each
specific perturbation of the data:

DATA PLOT

* Single outlier Large value for i = 1
or n, depending on
sign of outlier

* Number of outliers Plots turn up at
of each sign, both ends

or

Symmetrical distribu-
tion with more extended
tail than normal

* Tendency to skewdness Plot higher at one
end than the other

The presence of an outlier may mean that an error
has occurred or it may mean that an unusual but
valid event has occurred. At best, the residual
analysis alerts the investigator and encourages
him to search further for an explanation. Anscombe
and Tukey warn that with residual analysis it is
relatively easy for one kind of misbehavior of the
data to simulate another. For example, they note
(p 143) that "a single very wild value will (i) act
like an outlier, (ii) lead to very non-normal values
of estimated shape coefficients, (iii) indicate
enhanced variability for each of the subgroups to
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which it belongs, (iv) appear to constitute a
measurable dependence of variability of response
upon level of response." They also emphasize
the ease with which the strength of the evidence
offered by a single plot may be overrated and they
encourage the search for repeated occurances of
a residual pattern from several bodies of data.

Anscombe and Tukey also puint out the dangers of
applying numerical procedures to data before outliers
are properly dealt with. Removal may be the best
way to handle erroneous data, either analyzing the
remaining data with the values missing or assigning
modified values in their places. The circumstances
and the purpose of the experiment help determine
the best way to handle outliers.

5. Help decide when to stop adding terms in a cumulative
model. The results from an unreplicated screening
~T--n may be ordered according to the magnitude of
the effects of each source of variance and a
cumulative proportion of variance can be assigned to
each succeeding value (Simon, 1977a, pp 75-83; 1979,
p 41). The investigator must decide where to draw
the line between effects that probably are critical
and those that are not. If residuals are obtained
using the subset polynomial and no unusual patterns
are observed and a test of the lack of fit finds
that the model adequately represents the response
surface, the investigator may stop including terms
beyond that point.

6. Indicate the adequacy of the model. If "pure" error,
as obtained from repeated measures at the center of a
central-composite design, is isolated from the
residual variance, the remaining variance represents
the degree to which the estimated model fails to
fit the data. When residuals are plotted against
the predicted values, the presence of a linear or
quadratic trend suggests that a data transformation
is needed or that additional terms must be added to
the model.

7. Identify terms contributing to large interaction
effects. Valid three-factor interactions are
infrequent in human performance data (Simon,
1977a). Valid four-factor or higher interactions
are so unlikely that if their effects are large,
they should be suspect. Quite often a large
higher-order interaction may indicate the presence
of an aberrant observation. An examination of the
residuals when a questionable term is excluded from
the fitted model will often indicate which condi-
tions are responsible.
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Hunter (1966) gives an example to show how residual
analysis may facilitate the interpretation of such
an interaction. In a 24 factorial design, two of
the factors, their two-factor interaction, and the
four-factor interaction showed large effects. The
inverse Yates' algorithm was used to determine the
predicted performance when the model included only
the coefficients of the two-factors and their
interaction with all other coefficients set equal
to zero, including the non-trivial one associated
with the four-factor interaction effect. When the
residuals were obtained for each term of the 2
factorial, one condition was found to show an
unusually large response when compared with the
estimated standard deviation for the data.* It was
discovered that the large response was due to a
recording error. When it was corrected, the
aberrant four-factor interaction disappeared.

8. Reveal distortions introduced by external sources of
variance. Residuals should be uncorrelated with
any external source of variance. If, for example,
residuals are plotted as a function of time, we do
not expect to find that they increase or decrease in
magnitude, become more or less variable, or even
show curvilinear relationships over time. The
presence of any of these patterns suggests that
the data be transformed to eliminate the effect or
that other terms be added to the model to account
for time effects.

If the investigator is concerned that his experi-
mental data may be distorted by uncontrolled and
unplanned changes that took place in the environ-
ment when the data was being collected, he may com-
pare the residuals associated with the different
conditions to see if they show corresponding changes.

Daniel and Wood (1971, p 32) state that plotting techniques
can not be expected to~ work well with less than 20 observations,
and are more efficient when the number exceeds fifty. Still, an
investigator may use them to enhance the effectiveness of his
visual inspection of the data prior to formal analysis, provided
he does so with restraint.

*In this example, the standard deviation was obtained
by cor"-ining the sum of squares for the eleven terms of the
factorial that were considered trivial (i.e., all except the
two factors, their interaction, and the four-factor inter-
action) and dividing by N-K-l (or 11 in this example) and
taking the square root of the results.

4 3/44



NAVTRAEQUIPCEN 78-C-0060- 3

SECTION V

IDENTIFYING THE EXPERIMENTAL CONDITIONS IN 2 k-p DESIGNS
WHEN GIVEN THE DEFINING GENERATORS

At times, 2 k-p fractional factorial designs are described
only in terms of the defining generators.* An investigator
may wish to know what experimental conditions make up the
completed design. This information is needed to run an experi-
ment or if a design is to be fractionated, to identify the
conditions to be used without needing to construct a complete
sign matrix.

To illustrate this process, let us begin with the
following set of defining generators:

I, ABC, ADE.

Generators are independent of one another and cannot be
obtained by multiplying together other generators. Contrasts
are obtained by multiplying ever, factorial combination of the
defining generators by one anoth,-. In this case, with two
generators, there is only one adc..tional combination. The
complete set of defining contrasts here would be:

I = ABC = ADE = BCDE.

This set of defining contrasts describes a quarter repli-
cate of a 25 design containing rive factors, A, B, C, D, and E.
The design requires 2-5-2 = 23= , experimental conditions. It
is a Resolution III design, in which all main effects can be
isolated from one another but not from two-factor and higher-
order interactions.

To form different fractions (i.e., blocks of the total
factorial), the design generators may be assigned a positive
or a negative sign. The signs of the complete set of defining
contrasts will follow the usual arithmetric rules for multi-
plying values with the same or different signs."* Thus:

*Readers who are unfamiliar 4th the terms or basic
mechanics discussed in this paper are referred to Box and
Hunter (1961) , Davies (1967) or Simon (1973).

**Of course, we aren't really multiplying signs; we are
multiplying coefficients of plus or minus one. We drop the
one to make the tables less confusing.
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Generators Remaining Contrast

I ABC ADE BCDE
1) + + + + 4-(which is the product

of two plus signs)
2) + + - - ~-(which is the product

Blocks of a plus & minus sign)3)+ - + - d
4) +- +

These contrasts are actually read as a string of effects

all aliased with the Identity

Block 1 = (I + ABC + ADE + BCDE)

Block 2 = (I + ABC - ADE - BCDE)

and so forth.

From.these we can easily determine the aliases for each
effect in any block. For example, in Block I:

(A + BC + DE + ABCDE)4-(The product of A
(B + AC + ABDE + CDE) and the identity
(AB + C + BDE + ACDE) string for Block 1)

and so forth. For Block 2, the string of aliases for B
would be, for example:

(B + AC - ABDE - CDE).

To .find the experimental conditions in a particular
block, we must assign signs to each factor (in this case,
to A, B, C, D, and E) in combinations that produce the
correct signs for the contrasts given for the particular
block. Let us use Block 3 to illustrate this, where

Block 3 = (I - ABC + ADE - BCDE).

Prepare at least one column for each factor. Sometimes
it helps, but is not necessary and may even be awkward as
the number of defining contrasts increases, to group them as
they appear in the contrasts. Thus we might head each
column as:

1) A B C D E

or 2) iA BB CD Ej

or 3) LB C Ai D E ABC
rADE

BCDE
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To illustrate how we build the sign matrix, let us use the second
layout where each contrast has its own columns. We must develop
eight independent experimental conditions. The steps below show
how the conditions in Table 6 were derived.*

Starting with contrast ABC, which for Block 3 has a minus

sign associated with it, we assign signs to A, B, and C individ-
ually so that their product will always equal minus. This means
that there must be an unequal number of minus signs assigned, i.e.,
either one or three. The four possible combinations for A, B, and
C, that meet this criterion are -++, +-+, ++-, and ---. Next we
assign signs to A, D, and E to create a positive ADE contrast. The J
available selections are restricted by the signs already assigned
to A. For this contrast, since ADE is assigned a plus sign in this
Block, there must be an equal number (i.e., two) of minus signs in
every combination. Thus, if A is already minus, then there are two
possible combinations for D and E. One would be +, - respectively
and the other would be -, +. When A is plus, then D and E must be
either ++ or --. Having filled these two contrasts the columns
for B, C, D, and E are already determined. If the first two con-
trasts have been done correctly, the third, BCDE with a minus sign,
will also be correct, with an odd number of minuses (1 or 3) each
time. The combined signs are shown in Table 6.

TABLE 6. BUILDING THE SIGN MATRIX & IDENTIFYING CONDITIONS

Factor Headings (Grouped by Contrast)

Block 3
-(A B C) +(A D E -(B C D E) Conditions

) + + + - + + + - bcd 1)

2) - + + + - + bce 2)

3) + + 4 - + + + acde 3)4) + - - -+-ac 4)

5 + + + + - + + abde 5)
6) + - + - ab 6)

7) \ - + - - - + - d 7)
8) - + + e 8)

*It is only necessary to assign the signs to all of the defining generators.

When this is done properly, the remaining defining contrasts will be correct.
When the fractional factorial is small, writing out all of the defining contrasts

could become burdensome for this purpose.
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The final step is to use the sign matrix to name the
experimental conditions that make up the fractional factorial
for this particular Block 3. We do this, of course, a row
at a time by citing the letters of the factors with a plus
sign. Thus within the boxes surrounding the five factors in
the table, we find on the first row, A, B, C, D, and E have
the signs -, +, +, +, -, respectively. Since Factors B, C,
and D were given plus signs in that row we name the firstexperimental condition bcd. The names of the other condi-tions are shown in the F3ght-hand column of the table.
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SECTION VI

AN ECONOMICAL DESIGN FOR SCREENING INTERACTION EFFECTS

DeGray (1968) proposes an in 2resting economical, multi-
factor design for identifying a certain type of interaction
response during the preliminary and screening phases of a
research program. This type of interaction is characterized
by a pattern of responses in which nothing of consequence
happens as each experimental condition is tested until a
particular combination of factor levels are combined; then a
major response occurs. He refers to this type of interaction
as "coactive."

DeGray gives the following example to show the effect to
be expected. A spark is passed through four chemical
atmospheres composed of the factorial combinations of the
presence or absence of two chemicals, hydrogen and oxygen,
i.e.,

(1) None

a Hydrogen only

b Oxygen only

ab Mixture of hydrogen and oxygen.

A coactive interaction is in icated when nothing happens
in the first three tests and an explosion occurs in the
last. If the magnitudes of these responses are designated
0, 0, 0, and 1000 respectively, an analysis of variance
would reveal the effects of the three sources of variance to
be

A 500

B 500

AB 500

When the effect of the interaction term is approximately the
same size as the main effects, as in this example, the
presence of a "coactive" interaction is indicated. The
results from the analysis of variance tends to cloud the
true implications of the data.

APPLICATIONS TO EQUIPMENT DESIGN PROBLEMS

The design might be used when the investigator expects
that only one combination of equipment parameters in a 2x2
matrix will show an exceptionally strong effect. This form
of interaction is referred to as "boom" effect. For
example, in the design of pilot-training simulators, one
needs to know how many and which of the six degrees of
motion are necessary for effective training. Several

49



NAVTRAEQUIPCEN 78-C-0060-3

approaches can be considered. One might study the main
effects of the six degrees of motion in a screening design.
With 16 observations, all main effects can be isolated
from the effects of strings of two-factor interactions but
remain aliased with three-factor interactions. For this
particular problem, however, one might suspect that it
would be more informative to obtain and understand the
effects of combinations of degrees of motion, i.e., the
interactions, rather than the main effects. If so the
conventional screening design would be the worst data
collection plan to use. On the other hand, it would not be
economical to do a complete factorial design to look at
all the interactions. With six degrees of motion being pre-
sent or absent, this would require the investigation of 64
combinations. A less systematic approach has sometimes been
proposed in which only particular combinations, selected
on the basis of special knowledge, might be studied but this
is always subject to the dangers of omission, particularly
at the early phases of a research program. As an alterna-
tive to these approaches, DeGray's oactive designs might
be employed for a preliminary economical look at the problem.

CONSTRUCTING A COACTIVE DESIGN*

The design requires a minimum of N combinations to
identify the effective interactive (or coactive)
combinations of N variables. These N combinations consist
of N arrangements of the N variables taken (N-l) at a time.
Starting with all factors present (or at a high level), the
remaining combinations are made up by dropping one factor
each time (or by setting it at a low condition). DeGray
felt that it was unnecessary to include the all-high combin-
ation; however, in behavioral studies, both all-high and
all-low (or absent) combinations might be included to provide
a frame of reference against which the other combinations
could be compared.

Thus a design for examining interactive effects among
six-degrees of motion designated A through F, would look like
this:

(1) A B C D E

(2) A B C D F

(3) A B C E F

(4) A B D E F

(5) A C D E F

(6) B C D E F

DeGray discusses why this design differs from the
classical one-factor-at-a-time, main effect design.
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where the presence or absence of a letter indicates the
presence or absence of the corresponding degree of motion.
As suggested earlier, we might also wish to include two
other combinations, ABCDEF and (1).

INTERPRETATION OF THE DATA

The data would not be combined arithmetrically,
Instead, the pattern of responses would be examined. For
example, if all of the combinations gave a positive response
except No. 3, then it would be Variable D that probably
caused the reaction. If combinations Numbers 4 and 6 both
failed to give an adequate response, the interaction between
A and C would be suspected of causing the reaction. If
Numbers 3, 4, and 6 failed to react, then interaction ACD
would be suspected. On the other hand, if combinations of
variables acted as inhibitors, the pattern of responses
would be interpreted in reverse. The investigator should be
able to determine which of the opposing situations exists,
either by using knowledge he already has or by making a few
additional observations.

DeGray points out that the design works best when a
positive response is definitely positive and a negative
response is definitely negative. This may not be typical of
behavioral data, and certainly not with the clarity that
might be found in certain chemical reactions. The design
still can be used if an investigator suspects certain inter-
actions might be important and inspects the data accordingly.
If used cautiously, this might be the most economical means
of unraveling a great many two-factor interactions effects
confounded in strings in the Resolution IV screening design.

Interpreting the results from this design can be
affected if sequence effects are operating. Simon (1974) has
suggested ways that these might be minimized during the data
collectionphase. Furthermore, in our degrees of motion
example, no consideration was given to the fact that other
equipment variables may be operating and could interact with
the other degrees of motion. These might be held constant
in an exploratory study or included in the coactive design
if the investigator deems it necessary.

It should be obvious that the investigator must take
the same precautions with this as with any other experimental
design, whether exploratory or primary. The technique is
worth trying and gives a systematic economical approach to
questions that otherwise could be costly to answer.*

Cotter (1979), without referencing DeGray's work, presents an expanded
-- 2n + 2 -- design composed of the n conditions in DeGray's coactive design,
plus n "foldover" conditi-ns, plus one condition with all factors at the high
level and one with all at the low level. Though slightly better than
DeGray's, the precision of this design is still poor.
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SECTION VII

GRAPHIC METHOD AND INTERNAL COMPARISON
FOR MULTIPLE RESPONSE DATA

The 2k-p screening designs described by Simon (1973,
1977a) do not rely on replication to provide the error
variance needed in a test of statistical significance of the
effects. Daniel (1959, 1976; also see Simon, 1977a,
pp 38-98) proposed the use of ordor statistics and internal
comparison procedures to detect those uniresponse effects
that were probably not due to cl .,ce. Internal comparisons
procedures permit simultaneous c iDarisons among effects
with the aid of a statistical st .,.dard which is, at least in
part, generated internally by th, data. The process is con-
ceptually simple. If the univariite effects (or contrasts)
determined from the analysis of the fractional factorial
(screening design) are due to chanice,' when ordered and
plotted properly on normal probability paper* they will lie
along a straight line. Those that are larger than might be
expected by chance will deviate i.oticeably from the line.

Wilk and Gnanadesikan (1964; also see Roy, Gnanadesikan,
and Srivasta, 1971, Chapter VIII; also see Simon, 1977a, pp
151-158 for a general description of the procedure) describe
how to use a similar graphic method to evaluate the effects
from an unreplicated design when there are multiple respon-
ses. While there are times'when the purpose of the mission
(and not the statistics) determines the relative weights to
be assigned to multiple criteria, there will be circumstances
when the investigator may wish to rely on simple statistical
combinations that take into consideration the correlated
relationships. Since the procedure proposed by Wilk and
Gnanadesikan is rather involved and is explained in matrix
algebra terms, it is described b-low along with an example to
facilitate its use.

THE GENERAL APPROACH

The procedure in some resp(uts is analogous to Daniel's
wherein the multivariate responses of the 2k

-P effects are
tested simultaneously by means of graphical internal com-
parisons. In this approach, we will need a multivariate
estimate of the effect and suitable graph paper on which to
plot it. The multivariate estimate will be the squared
Euclidean distance between the centroids (of high and low
conditions) in the multivariate space. These will be
plotted on the appropriate quantiles of the standard gamma
distribution. If the null hypothesis is correct, the plots

* In the original article, Daniel (1959) proposed using

half-normal probability paper on which to plot the data.
Later, in his 1976 Look, he sugjested that more information
would be revealed if full normal probability paper were used.
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will lie along a straight line. If it is not correct, the
largest effects will appear to curve away from the straight
line configuration. This procedure is somewhat more compli-
cated to apply than is the plotting of univariate effects
on normal probability paper since two parameters, A and 9,
of the gamma distribution must be estimated.

Let us illustrate the procedure step by step, usinq a
numerical example prepared by Weinman (1979).

THE WORKING DATA

The fictitious data for this example is shown in the
first three columns of Table 7. In the first column are the
32 experimental conditions of a 25 factorial design listed
in Yates' standard order. In the next two columns are the
values for the two responses, yj and Y 2 , for each condition.
The second variable, Y 2 was actually created by adding
random digits, (+0, +1,...+9), to yl.

OBTAINING THE SQUARED DISTANCES

The next two columns, Y 1 and Y 2 1 give the effects (mean

differences crcontrasts) for the values in y1 and y 2 , respec-
tively. The effects are obtained by applying Yates' algo-
rithmto the columns for y1 and y 2 separately. Since the
effects are arranged in standard order, the sources of their
identities are composed of the same letters as the condi-
tions on the same line.

To calculate t4e squared distances for the Identity
Matrix, sum (Y, + Y2 ). For example, using the Y1 and Y2
values for the S effect in Table 7, i.p., -4 and -5, the
squared distance for S is (-4) + (-5)2 = 41. These are
listed in Table 7 in column six, and the :ource of each is
the same as for the individual effects. if there had been
more than two responses, the squar9 d digtances for the Ti
Identity column would have been (YI + Y 2 + .... + Y This
calculation assumes that the relationship among thep
responses is a simple linear one, that is, they are weighted
equally without standardization.
DETERMINING THE PARAMETERS OF THE GAMMA PLOT

First determine how many of the K squared distances
are likely to be trivial. Ordinarily the higher-order
interactions would be selected. In our example, all three-
factor interactions and higher --16 distances (Table 7,
column 1) - were chosen. Of these, the M smallest squared
distances are selected so that the ratio K/M is at least
3/2 = 1.5, and preferably slightly larger. Avoid any
potentially critical distances. In our example, the eight
distances of the Identity matrix (Table 7, column 6) with

54



NAVTRAEQUIPCEN 78-C-0060-3

TABLE 7. RAW DATA, EFFECTS, AND SQUARED DISTANCE

Experimental Responses Effects # Sauared Distances
Conditions -- - X Identit S-_

(3.5 7.0 -0.0 3.094

11.5 -15.5 -4.0-: -5.000 41.0 2.34
d 8.0 10.0 7.8: 8.312 131.1 8.36

sd -2.0 -2.0 2.51 2.875 14.5 0.82
n 4.5 9.0 1.5t 1.938 6.2 0.35

sn -18.0 -19.0 1.68, 2.250 7.9 0.50
dn 4.0 6.5 2.562 2.688 13.8 0.89
sdn* 5.5 3.5 0.938 1.000 1.9* 0.12*

p -1.0 0.5 -2.625 -3.375 21.9 1.74
sp -14.5 -18.0 1.500 2.688 9.5 1.27
dp 9.0 5.5 -0.250 0.125 0.1 0.17
sdp* -4.5 -9.0 -5.875 -7.062 84.4 3.45
np -11.5 -15.5 -2.562 -1.875 10.1 1.82snp* -6.5 -6.5 0.562 1.438 2.4* 0.67
dnp* 1.0 3.0 0.562 3.217 10.9 6.68
sdnp* 3.0 3.5 -0.312 -1.438 2.2* i._

k 2.5 0.5 3.750 4. 12 37.2 2.19
sk -LO.0 -9.0 4.25 C .10 55.6 4.14
dk -4.0 0 -2.000 - .z62 6.4 0.97
sdk* -7.0 10.0 -0.750 -i.000 1.6* 0.10*
nk 6.0 10.5 2.186 1.188 6.2 2.18
snk* 0.5 0 -3 062 -3.10 21.6 1.23
dnk* 7.5 3.5 1.122 0.437 1.6* 0.96

sdnk* 16.5 17.5 -1.094 0.750 1.7 3.94

pk -4.5 -4.5 -0.250 0.t25 0.4 0.80
spk* 7.5 9.5 -1.75, -2.562 9.6 0.75*
dpk* 2.5 3.0 -0.8 -0.625 1.2* 0.22*

sdpk* -1.5 -2.j -1.8W, -2.062 7.8 0.46*
npk* -5.5 -8.5 -2.43<: -2.500 12.2 0.83*

snpk* -5.5 -5.5 -3.18c -3.438 22.0 1.35
dnpk* 9.0 11.0 1.430 1.875 5.6* 0.34*
sdnpk* 1.0 4.0 2.43b 1.938 9.7 1.39

IThe sources for the effects (ai-d the squared distances) are
labelled with capital letters that correspond to the letters of
the Experimental Condition on the same row. For example, Factor S
has effect -4 for Yj and -5 for Y2.
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an asterisk beside them were chosen*. This made the K/M
ratio equal 16/8 = 2, an acceptable value.

The M values just selected will be used to obtain an
estimate of r, the shape of the gamma distribution. Two
parameters, P and S, are needed.

P = geometric mean of the M distances divided
by the largest of the M values. The geo-
metric mean is equal to the product of the
M distances raised to I/M.

S = arithmetric mean of the M distances divided
by the largest of the M values. The erith-
metric mean equals the sum of the M distances
divided by M.

In our example, P 2.034/5.6 = 0.36, and S = 2.275/5.6
= 0.41. To find Eta = n, use Table IV, beginning on page
198, in Roy, Gnanadesikan, and Srivastava's book (1971).**
Find the table for appropriate K/M ratio and then look up
P and S. It may be necessary to make a bilinear interpola-
tion to properly represent your values if they are located
between those listed in the tables.

A bilinear interpolation can be made using the following

equation:

9 = nr1 (1 - a - b + ab) + n2l (a - ab) + n12 (b - ab)

+ 922 (ab)

where

P - P1 a S - Sl
a - P2 - P1 and b - S2 - Sl

and P and S are the values you obtained, and P1, P2, Sl, and
S2 are the two pairs of values in the tables that bracket P
and S. lij is the tabled value at P. and S

In our example, for K/M = 2.0, we find that P = .36 is
one of the values listed; we are lucky. Our S of 0.406,
however, is between the tabled values of .40 and .44, where

*In retrospect, one might question whether or not dis-
tance X8 = 5.6 should have been included in the M set, since
it appears to be unduly large.

**These tables are also given in an article by Wilk,
Gnanadesikan, and Huyett (1962).
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the ns are 1.443 and 1.306, respectively. The calculations
for making the bilinear interpolations are shown in Table 8
for this data (although in this case, no interpolation was
needed for the P. dimension. The r is estimated to be 1,4.

1

To find the guantiles of the gamma distribution, we need
Table VII beginning on page 208 in Roy, Gnanasedikan, and
Srivastava's book (1971)*. The percentages and associated
quantile values will be found in that table under the ETA
value just determined. In our example, under the ETA = 1.4,
we find the following values listed;

Percentage Quantile

0.1 8.4321789E-03

0.5 2.6824095E-02

0.7 3.5971068E-02

on up to

99.5 6.2058056E 00

99.9 7.9005137E 00

With these pairs of values serving as coordinates, we plot
the function relating percentage to quantiles (see Figure 4).

*These tables can also be found in an article by Wilk,
Gnanadesikan, and Huyett (1962).

TABLE 8. EXAMPLE OF BILINEAR INTERPOLATION

P1 = .36 = P2

S1  (.40) 1.443 1.443

T12 22

S 2  (.44) 1.306 1.306

.36 - .36 .406 - .40
0 b * .15.36 - .36 .44 - .40 =

nl (l-a-b+ab) = n21 (a-ab) + q12 (b-ab) + n22 (ab)

n= 1.443 (1-0-.15+0) + 1.443 (0-0) + 1. 306 (15-0) +1. 306 (0)

n= 1.443 (.85) + 1.306 (.15)

n = 1.42 or 1.4
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THE PLOT

Table 9 is to be prepared. The first column consists
of the ranks listed from 1 to N-1, in our case, 31. Next,
the percentage, b., associated with each rank is calculated
using the followiAg equation:

b. i-0.5
b -L0. x 100

1 L xO

for rank i = 1, 2, ... L, where L = N-I, or 31 in our ex-
ample. Later, if the investigator wishes to drop some of
the largest distances, he would go through this same
procedure, but would use the smaller value of L. These
percentage values would be listed beside the appropriate
rank as shown in Table 9, columi. '. Next we will list in
column 3, the quantiles associatec. with each of the per-
cents. These are determined from the function drawn in
Figure 4. For example, b or c , equals quantile x or
1.08. In column 4, we lisi 6 th', ared distances of tA
Identity matrix found in Table 7, )ut ordered from the
smallest to the largest. In column 5, the source associated
with each distance is given.

L points are next plotted on ordinary graph paper with
the squared distances on the ordinate and the quantiles on
the abscissa. The 31 points in our example are shown
plotted in Figure 5. Although reasonable care should be
taken in the plotting, for the smaller ranks, it may not be
necessary to plot every point.

INTERPRETATION

Inspection of Figure 5 shows that the distances at the
lower ranks tend to lie along a straight line*. At the
higher ranks, certain distances bpgin to deviate above the

* Actually, a break is visible between the 9th and 10th
point, creating two straight lines with approximately the
same slope. This suggests that the error variance is not
homogeneous. Weinman (1979) proposes a possible explanation
for this based on the fact that the x, data had been taken
from some published by Yates. He writes: "Yates mentions
a ridge of fertility running through the field. This could
account for such a jump. It's likely the hypothesis of
homogeneous variances is not correct. I would also note that
the field was laid out in four blocks and none of the 14
longest distances come from block three. This suggests that
block three has a different effect on yields from the other
three blocks, possibly because of the ridge of fertility."
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TABLE 9. DATA REQUIRED TO PLOT THE ORDERED
DISTANCES FOR THE IDENTITY MATRIX

Ordered
Ranks Percentages Ouantiles Distances Sources

1 1.6 .06 0.1 DP
2 4.8 .14 0.4 PK
3 8.1 .21 1.2 DPK
4 11.3 .27 1.6 DNK
5 14.5 .33 1.6 SDK
6 17.7 .39 1.7 SDNK
7 21.0 .46 1.9 SDN
8 24.2 .52 2.2 SDNP
9 27.4 .58 2.4 SNP

10 30.6 .64 5.6 DNPK
11 33.9 .71 6.2 N
12 37.1 .78 6.2 NK
13 40.3 .85 6.4 DK
14 43.5 .92 7.8 SDPK
15 46.8 1.00 7.9 SN
16 50.0 1.08 9.5 SP

17 53.2 1.16 9.6 SPK
18 56.5 1.25 9.7 SDNPK
19 59.7 1.34 10.1 NP
20 62.9 1.45 10.9 DNP
21 66.1 1.55 12.2 NPK
22 69.4 1.68 13.8 DN
23 72.6 1.81 14.5 SD
24 75.8 1.95 21.6 SNK
25 79.0 2.12 21.9 P
26 82.3 2.32 22.0 SNPK
27 85.5 2.55 37.2 K
28 88.7 2.83 41.0 S
29 91.9 3.20 55.6 SK
30 95.2 3.75 84.4 SDP
31 98.4 4.82 131.1 D
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line extrapolated from the line formedby the points at the
left. The interpretation process corresponds to that for
uniresponse graphic plots, i.e., those distances lying off
the line are larger than might be expected by chance. In
this example, distances for D, SDP, SK, S, and K, are well
above the line, and SNPK, P, and SNK are worthy of further
investigation. One might repeat this entire process but
dropping the first four distances, reducing K to 27. This
procedure might be repeated several times for the remaining
larger distances.

The graphic process provides one additional criterion
to help the investigator interpret his data. The larger the
number of effects, the more likely the idealistic principles
will behave properly (providing the experimenter has done
the rest of his job properly). Certainly the multivariate
nature of these effects makes any interpretation more com-
plex than would be the case with a uniresponse design. This
complexity is further increased by the aliasing present in
the fractional factorial designs. Only experience will
overcome these difficulties. For the present, however, the
investigator should check and double check his conclusions
against a variety of criteria, using the analyses to assist
him rather than to lead him. Gnanadesikan (1963) emphasizes
that the use of a multiresponse analysis does not preclude
examining each response singly to better understand the
multiresponse data.

OTHER MULTIVARIATE MODELS

Most statistical analysis is based on a linear ordering
of the data. This is a characteristic of real numbers but
not of vectors or combinations of real numbers. Thus, the
ordering of multivariate data involves the use of a metric
or some measure of size*. Distance, d., does not have to be
measured as "squared distance" as was Aone in the above
example. Actually the complete expression should be:

d . = x Axi, i 1 1, 2s ...., K

where A is a compounding matrix, positive semi-definite,
but otherwise selected at the discretion of the investigator.

The Identity matrix used in our illustration weights the
variables Y and Y equally and does not take into account
any correlaion that might occur between the two. For that

* Barnett (1976) has written a comprehensive article
describing the problems and proposed solutions for the
ordering multivariate data.
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model, the compounding matrix A is a unit matrix, which has
ones on the principal diagonal and zeros off the diagonal.

A slightly more complex matrix would be a diagonal
matrix with reciprocals of the variance of Y and Y on the
diagonal. This is equivalent to defining "distance4 as

2 2
D = +

2 2S1  S2

The variables would be "adjusted for size," but would still be
treated separately with their effects simply added together.

-i
THE S MATRIX

To take into account the covariation among responses, a
non-diagonal matrix is required. A standard matrix used for
this purpose in multivariate analysis is S- 1 , where S is a
matrix of estimates of variances and covariances of the
variables. That is,

S = 2 S2  $2 .... Sk1 12 13" 1k

r "S2

e S21 2 S,23 ae s2k

S. S* S:
kl k2 k3 k

2where the diagonal elements, S., are the sample variances of
the variables and the off-diag6nal elements, S.., are sample
covariances between variables i and j. That ii

2 N Z - 2 yi ) 2

S = iS(N-l)

and
SYiY 9 - (Y) Y.)

S.. = N
1) (N-l)

In general, one would use a computer to both calculate the S
matrix and to invert it (i.e., find S-1 ). Computer packages
for these purposes are readily available.
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In the original example, with ,nly two responses, the

S matrix is only 2 X 2 and inversion is simple. If

then

d 2-b

S ad-b 2  ad-b

=( -b 2a

ad-b ad-bv

The rule is simple: interchange d and a, pu minus signs on
the b's, and divide every element by (ad -b

Continuing with the original example, if we can use
this approach on columns IV and V of Table 7, S2  7.76,
S2 = 10.82, and = 8.71, so

7. ("76 8.711

871 10.8 2)

and

S1086 0.986)

The distances, D, are defined as

D = (YI Y2 ) S- 
Y I )

or in our example,

D ( 1.349 -1.Y26[ Y

2 -1.086 0.968/ Y2

2 - 2(086)YIY + 0.968 Y2
- 1.349 Y1  1 " 2
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The D's calculated in this manner are shown in the last
column of Table 7.

The procedure from this point on, given these distances
based on the S-1 matrix rather than the Identity matrix would
be the same. When L = 31, K = 16, and M = 8, the eight
smallest distances (among the 3-factor or higher interactions
are marked with asterisks in the last column). Note that
five of the smallest are the same as with the Identity
matrix, but three are not. For those readers who wish to
work through the problem themselves, Weinman provides the
following values for comparison:

P = .41, S = .53, n 1.41*

The quantiles and the ordered distances when the S matrix
is used are shown in Table 10. These should be plotted as
before.

When we compare the results obtained when the Identity
and the S-1 matrices are used, we find that D is the largest
effect in both and that SK and SDP are large in both. But
DNP and SDNKwhich are not large when the Identity matrix is
used (i.e., when "distance" is defined as the sum of the
performance measures squared) are large when the S-1 matrix
(i.e., the sum of the reciprocal of the variances of each
performance measure with their covariation taken into
account) is used. Weinman (1979) explains this as follows:
DNP is "found" by the S-l matrix because the value of Y at
DNP is much larger than that of YI. A similar statemen? is
true at SDNK, where the sign of Y1 is negative while the
sign of Y2 is positive."**

OTHER COMPOUNDING MATRICES

Roy, Gnanadesikan, Srivastava (1971, p 103) state,
regarding the choice of the compounding matrix, A: "A
truly multivariate situation cannot usually be fully des-
cribed by a single one-dimensional representation and,

*It is happenstancy that the values of n are the same
for the Identity and S matrices in this example.

**The results from this analysis cannot be related to
anything in the real world since the data for Y2 were
contrived.
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TABLE 10. DATA REQUIRED TO PLOT THE ORDERED
DISTANCES FOR THE S - MATRIX

Ordered

Ranks Quantiles Distances Sources

1 .06 0.10 SDK
2 .14 0.12 SDN
3 .21 0.17 DP
4 .27 0.22 SPK
5 .33 0.34 DNPK
6 .39 0.35 N
7 .46 0.46 SDPK
8 .52 0.50 SN
9 .58 0.67 SNP

10 .64 0.75 SPK
11 .71 0.80 PK
12 .78 0.82 SD
13 .85 0.83 NPK
14 .92 0.89 DN
15 1.00 0.96 DNK
16 1.08 0.97 DK

17 1.16 1.16 SDNP
18 1.25 1.23 SNK
19 1.34 1.27 SP
20 1.45 1.35 SNPK
21 1.55 1.39 SDNPK
22 1.68 1.74 P
23 1.81 1.82 NP
24 1.95 2.18 NK
25 2.12 2.19 K
26 2.32 2.34 S
27 2.55 3.45 SDP
28 2.83 3.94 SDNK
29 3.20 4.14 SK
30 3.75 6.68 DNP
31 4.82 8.36 D
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therefore, it should be recognized that, for any given prob-
lem, it is always advisable to try several different com-
pounding matrices in the calculation of the squared
distances {d.). In fact, it would often be desirable not
only to try ut several measures of size or squared dis-
tances which are positive semi-definite quadratic forms,
but also to try different kinds of measures of size or
distance functions. The problem of the choice of A is
under continuing study and a preliminary report of certain
findings of the study may be found in Wilk et al (1962."
They point out that any interpretation of the results must
be made conditional upon the choice of the A matrix.
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SECTION VIII

THE PLACE FOR REPLICATION IN ECONOMICAL
MULTIFACTOR RESEARCH

To psychologists, replicating an experimental design is
as natural as breathing and occurs just as unconsciously.
Unfortunately, it is a costly procedure when economy in
multifactor research is paramount; fortunately, it is not
always necessary. It is important that the investigator
recognize the different situations in which replication may
or may not be desirable or required.

REPLICATING REQUIRED LESS IN THE EARLY rHASES OF RESEARCH

Before an unbiased model of a response surface has been
derived, replicating a design is generally not cost effec-
tive. During the screening phase, it is more productive to
use any extra data-collection effort to add new points to
the fractional factorial than it is to repeat original
conditions. For example, if one were to replicate the con-
ditions of a Resolution III design, the only additional
information that would be obtained would be an estimate of
the error variance. If instead of replicating, however,
data were collected to complete a second properly selected
Resolution III design, although no error would be externally
estimated, main and two-factor interaction effects could be
isolated, a considerable increase in information. Repli-
catinq to obtain an error estimate is not justified in the
screening phase since other techniques can be initially
employed to get a rough estimate of essentially the same
information. For example, an approximation of error might
be obtained from the left over sources of variance when main
effects do not saturate the design; when they do, order
statistics can provide an internal error estimate. if
trivial effects are present, they can provide a source of
"discovered" replication. Precision in multifactor screening
design is derived from "hidden" replication. These terms
and methods have been discussed in other reports by Simon
(1973, 1979).

REPLICATION USEFUL TO ESTABLISH P5YCHOLOGICAL CONFIDENCE

Even when an investigator conscientiously tries to
include all factors in his experiment, he may not be success-
ful because of cost and time pressures, or because he has
not yet identified the source of variance. Critical subject
characteristics, which in the holistic approach to behavioral
research is just as important as equipment or environmental
factors, are often difficult to identify. While an inves-
tigator may believe that he has considered all the critical
subject factors, he may wish to test this assumption by
running several subjects on the same conditions. While this
is often referred to as "replication," it is so only to the

iL extent. that subject characteristics have indeed included all
Major sources of subject variance.
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The prudent investigator, however, will test this
assumption. He will repeat all or parts of the experiment
using two or more individuals that are presumably
"identical," being, in fact, identical on the potentially
critical factors already identified. By taking this pre-
caution, the investigator will compare -- not average -- the
results from several subjects to see if the same critical
effects are revealed in essentially the same order of
magnitude among individuals. If two or more presumably
identical subjects perform differently, it warns the investi-
gator of the possibility that other unidentified factors
are operating. Simon (1977a) discusses various patterns of
responses that might occur and possible explanations for
them. If the results prove to be essentially identical, then
and only then should they be averaged.

PARTIAL REPLICATION FOR ERROR ESTIMNTES

When the response surface is being derived, it becomes
important to estimate how well the regression model fits the
real data. The lack of fit variance is compared in an F-
test with'some external estimate of error variability. Box
and Hunter (1958) propose that it would be economical and
often sufficient to obtain this estimate by only replicating
at the center of the central-composite design.

Replication at the center of a central-composite design
may not provide a powerful enough test of significance
(Simon, 1976a, pp 16-18) in all cases. Furthermore, if it
is feared that variability may increase away from the center
of the design, the estimate at the center may be too small
to correctly assess the coefficients of the second-order
polynomial. Since we do not reallN know whether the
variance is or is not homogeneous over the total surface, we
may wish to replicate at points other than the center. it
is not necessary, however, to replicate the entire design.
Partial replication can increase the precision of our
estimated effects, add more degrees of freedom to the error
estimate, and improve the evaluation of the regression
model.

A number of people have pr-posed partially duplicated
designs. Daniel (1978) discusses designs proposed by
Clatsworthy (1973) for the partial replication of two-way
layouts. Patel (1963) describes the partial duplication of
two-level fractional factorial designs. Dykstra (1960)
proposes several plans for reproducing certain experimental
conditions of the central-composite, second-order response
surface designs. As a general principle with central-
composite designs, replicating either the star or the cube
portion (or a fraction thereof) is sufficient for partial
replication. Replicating the star increases the precision
of estimates away from the center of the experimental space.
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Combining Data from Partial Replication of a 2k-p Design

When a sub-fraction of a Resolution V fractional facto-
rial is used for partial replication, Box (1966) provides a
simple method of combining the old and new data. The
Resolution V (or V-) design indicates that with the original
block of data, all critical main and two-factor interaction
effects have been isolated from one another. In the sub-
fraction, however, this is not the case.

New estimates of each effect can be made by using the
following equation to combine the old and new data:

Effects
Old estimate) + n2  Effect of iso-

New Estimate =(from first 2 of - lated
\block / n1 + n 2P String sources

combined

Where a = plus or minus one, which corresponds to the
sign of the aliased effect

nI = number of observations in first set of data

n2 = number of observations in second set of data

p = number of aliased effects in string
8-2 dsg

Let us use this to combine the data from a 2 design
with data from a 28-4 design. Given: V

First set: n = 64 condftions1

Isolated effects, /A/ = 5, /BC/ = 2, /GH/ = 1

Second set: n2 = 16 conditions

Effect of string, (A - BC - GH) = 2.5

p = thice effects in string
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Substituting in the equation we get:

+1 x 16
A = /A/ + 64 + 16 x 3 [(2.5 -/A/ - /BC/ - /GH/]

6+1x3

A = 5 + [2.5 - (5 - 2 - 1)]

^~ 1
A = 5 + 7 [-0.5] = 5 + (-.0714) = 4.93

and
^ -1 x 16

BC = 2 + 64 + 16 x 3 [-0.5]

BC = 2 + (-.) (-.5) = 2.0727

and

GH = 1.07

The error variance of the new estimate (VarN) is:

2 n + n2 (p -i)
VarN =4 o [1 2

n I  n I + n2P

which for this example would be:

VarN= 4a2 64 + 16 (3 - 1)

N 64 64 + 16 x 3
2

VarN = a 2 6 6 a2

Thus the additional observations reduced the error variance
of the new estimate to approximately 86 percent of the
original variance.

REPLICATION TO ESTABLISH CONFIDENCE LIMITS

At the end of a research program, after presumably two
or three equipment configurations have been selected based on
the results of the multifactor experiments, the investigator
may wish to make a more careful comparison of these final
choices, or to evaluate them against some earlier version to
decide whether or not the replacement is worthwhile. To make
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a more precise estimate of the differences in means, parti-
cularly if there is an interest in drawing the conclusion of
"no (practical) difference," the investigator will wish to
replicate these few experimental conditions.*

In judging whether the differences are important or not,
the investigator must trade-off the costs of making a wrong
judgment (Type I and II errors) against the costs of more
data collection. Rather than do the conventional test of
statistical significance, the investigator may wish to
establish a confidence interval, the limits between which a
hypothesis can be considered tenable and outside which,
untenable for a certain probability value. It is interesting
to note that Cochran and Cox (1957) wrote in their book on
experimental designs for hypothesis testing: "On the whole,
however, tests of significance are less frequently useful in
experimental work than confidence limits" (p 5). Box, Hunter
and Hunter (1978) in their book on Statistics for Experimen-
ters say: "Significance testing in general has been a
greatly overrated procedure, and in many cases where
significant statements have been made it would have been
better to provide an interval within which the value of the
parameter would be expected to lie" (p 109).

Some equations for estimating confidence limits are
shown in Table 11. Note that in the subscript for t, in
addition to "d.f." (degrees of freedom), we also select the
t for a particular a(probability of making a Type I error).
In some textbooks, this a is replaced by a/2. For example,
in the text by Cochran and Cox (1966), ais used. In the
text by Box, Hunter, and Hunter (1978) a/2 is used. How
can these apparently different equations be reconciled? The
difference lies in the t-table one intends to use. In
Cochran and Cox, the t-table in the back of the book shows
the t-values for a two-tailed test and the probability value
used to enter the table is the proportion of both ends of
the distribution summed. In Box, Hunter and Hunter, the
t-table in the back of the book (p 631) shows the t-values
for a one-tailed test and the probability value used to enter

*We didn't replicate much or at all when we had a great
many conditions to investigate. As we reduce the number of
conditions being examined, we begin to replicate more and
more.
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TABLE 11. EQUATIONS FOR ESTIMATING CONFIDENCE LIMITS

1 - aLIMIT FOR MEAN
(Two-tailed test)

Mean + ta//n

where a -2 1

1 -acLIMIT FOR MEAN DIFFERENCE (Paired)

Mean Diff. + t d~. a)(S.E. Mean diff.)

where S.E. Mean diff. (dif)__ a

where d = y al - Ybl

where degrees of freedom are appropriate to t

1- xLIMIT FOR MEAN DIFFERENCE (Unpaired)

Mean Diff. + t a I + -

- d (.,c) n A n B

where a jnla2+ n-
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the table is the proportions at one end of the symmetrical
distribution. Thus, if an investgator wants the t-value
for 15 degrees of freedom and a .05 probability of making
a Type I error in a two-tailed test, he would look up the
t in the a = .05 column in Cochran and Cox's book and
a /2 =.025 in the Box, Hunter, and Hunter book. In both
cases, t = 2.131. If he wanted a .05 probability of making
a Type I error in a one-tailed test, he would look up t in
the a = .10 column in Cochran and Cox's book and a1/2 =.05

in the Box, Hunter, and Hunter book. In both cases, t=
1.753.

Hader and Grandage (1958), in an excellent discussion of
simple and multiple regression analysis, explain and
illustrate how to derive the confidence limits for regression
coefficients and predicted values for a multivariate
situation.

REPLICATION TO ESTABLISH PERFORMANCE LIMITS

Traditional confidence limits are intended to provide a
basis for pinpointing the value of a parameter, a mean or a
mean difference. There is also a need to replicate a single
condition at the very end of an experimental program to
answer the very practical question: Given this device,
between what limits will the group of people, theoretically from
the same population, likely to perform? We are concerned with
the one and ninety-ninth percentile levels here rather than
the fiftieth. While the results from the entire research
program (along with the holistic approach) should make
prediction of these limits quite accurate, there is still
the need to determine them empirically.

75/76



NAVTRAEQUIPCEN 78-C-0060-3

SECTION IX

THE SIGNIFICANCE OF TESTS
OF STATISTICAL SIGNIFICANCE

In recent years, the test of statistical significance
has become the most widely used analysis performed by
behavioral scientists doing controlled experiments. The
results from these tests have often become the primary
criteria used by experimenters, teachers, and editors alike
in evaluating the importance of an experimental study. In
fact, however, tests of statistical significance as ordin-
arily applied by psychologists provide very little useful
information in general and often lead to erroneous conclu-
sions in specific cases.

Baken (1966) wrote: "The test of statistical signi-
ficance in psychological research may be taken as an instance
of a kind of essential mindlessness in the conduct of
research" (p 436). Lykken (1968) wrote: "Statistical sig-
nificance is perhaps the least important attribute of a good
experiment; it is never a sufficient condition for claiming
that a theory has been usefully corroborated, that a mean-
ingful empirical fact has been established, or that an
experimental report ought to be published" (p 151) . Coats
(1970) wrote: "Most graduate schools of education still
require students to take what may be one of the most
irrelevant learning experience in their entire educational
career. The requirement is the study of inferential statis-
tics" (p 6). Cronbach (1975) argued that "the time has
arrived to exorcise the null hypothesis" (p 124) and Shulman
(1970) admonished that "the time has arrived for educational
researchers to divest themselves of the yoke of statistical
hypothesis testing" (p 389). Carver (1978) suggests that
"the complete abandonment of statistical significance testing
in the training of doctorial students in education research
should be seriously considered" (p 396).

The problem naturally is not with the test of statis-
tical significance itself but with the way which too many
psychologists misuse and misinterpret the test. Even when
used correctly, however, it provides little information of
a practical value.

In Table 12 are a list of fallacies and facts regarding
tests of statistical significance, particularly as they have
been applied in the behavioral sciences. This list has been
culled from a number of critical papers by Baken (1966),
Carver (1978) Kleiter (1969), and others referenced in these
three papers. The reader is urged to savor the original
papers.
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TABLE 12. FACTS AND FALLACIES REGARDING
TESTS OF STATISTICAL SIGNIFICANCE

Fallacy: The p value associated with the F-ratios in the
test of statistical significance (TSS) indicates
the probability that the observed effect is due
to chance.

Fact: The p value is the probability that an effect of
the observed size could be obtained if , in fact,
it was a certainty that chance is operating.

0

Fallacy: The p value from the TSS is the probability
that the same result would be obtained if the
experiment were replicated. It is an indica-
tion of the reliability of the result.

Fact: Reliability depends on how well critical factors
are controlled between experiments. It cannot
be predicted by any statistics.

Fallacy: The level of statistical significance is
inversely related to the probability that the
research hypothesis is correct (e.g., a .05
significance level, if reached, makes the
chances .95 that the scientific hypothesis is
true).

Fact: The entire study could be invalid no matter what
probability level is obtained in the TSS.
Validity is not a statistical concept, but
depends on the adequacy of sampling and the
quality of the data collection and analysis.

Fallacy: Using a TSS enables the scientist to make more
objective decisions regarding the rejection of
the null hypothesis.

Fact: The scientific decisions are still totally sub-
jective. The TSS helps make only statistical
decisions of little practical value. Since an
investigator is expected to use his judgment
to plan and design experiments, why is it so
sinful for him to use it to interpret the data?

(Continued)

78



NAVTRAEQUIPCEN 78-C-0060-3

(Table 12 continued)

Fallacy: The more subjects in the experiment, the more
faith one can have that the null hypothesis,
significant at the p = .05 level, should be
rejected.

Fact: Just the reverse. It takes a larger difference
to get the same p-value with ten subjects than
with 100.

Fallacy: Rejecting a null hypothesis at a reasonable
statistical significance level is ordinarily
required before one can claim support for a
research hypothesis.

Fact: One can almost always get statistical signifi-
cance by increasing the number of subjects,
selecting another p-level, changing from a two-
tailed to a one-tailed test and so forth. A
failure to obtain a significance level may have
nothing to do with the hypothesis and everything
to do with sloppy research.

0

Fallacy: A statistically significant factor is important.

Fact: With a large enough N, the difference required
for significance may be, for all practical
purposes, trivial.

Fallacy: A failure to get statistical significance indi-
cates that the factor (effect) is not important.

Fact: One may not have obtained statistical signifi-
cance because one used too few subjects or
because one did a sloppy experiment. Importance
has to do with the size of a valid effect.

0

Fallacy: When performance is measured in artificial
units, TSS helps to interpret the results.

Fact: TSS is not enough. It is necessary to have some
outside anchor point to evaluate the practical
significance of the magnitude of the effect.

(Continued)
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(Table 12 continued)

Fallacy: If a difference is statistically significant, it
indicates that the members of one group performed
better than the members of the other group(s).

Fact: The test only compares means, not groups. The

groups could overlap considerably.

Fallacy: if the mean of Group A is higher than the mean of
Group B, then a statistically significant result
infers that Group A performed better on average
than Group B.

Fact: This depends on the hypotheses being tested.
Most psychologists traditionally have used a
two-tailed, non-directional test. This only
indicates that the observed difference could have
occurred with a certain probability if chance had,
in fact, been operating.

(Continued from Page 68)

Psychologists have been prone to misinterpret (and
therefore misuse) tests of statistical significance. Fur-
thermore, they have failed to recognize the extremely limited
information that is derived from the test when it is perfor-
med properly. Too frequently the test is not performed
properly. Too often the hypothesis being tested is not the
one the experimenter really wants, but is the only one with
which he is familiar. The significance of several types of
hypotheses can be tested: loose or sharp, Fisherian or
Neyman-Pearson, one or two-tailed, directional or non-direc-
tional. Psychologists have overwhelmingly limited themselves
to sharp, Fisherian, non-directional, two-tailed tests,
whether the information obtained was what they wanted or not.
To make matters worse, among psychologists there has been
little consistency as to what the "error" term should consist
of. Simon (1976b) after analyzing the experiments published
over 14 years in the journal Human Factors found the error
variance was some composite of 17 different combinations of
classes of factor designations (i.e., equipment, subject, and
temporal sources, main and interaction effects). The choice
affects the outcome of the test.
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In the light of this confusion surrounding the use and
misuse of the test of statistical significance, its role as
an "automatic decision maker" for those who wish to escape
their responsibility as data interpreters is not justified.
In practice, the investigator can perform a number of analy-
ses that will supply the information he needs to decide
whether an effect is likely to exist or not (Simon, 1977a;
1977b).

The test can be used most effectively when the investi-
gator is interested in the absence of a practical difference
among conditions (see Section X) rather than in the exis-
tence of a difference. When the interest is primarily that
of detecting differences, then the weaknesses of the test
(enhanced by characteristics of behavioral research) come
into play. Cochran and Cox (1957, p 5) point out another
"useful property of a test of significance" which "is that
it exerts a sobering influence on the type of experimenter
who jumps to conclusions on scanty data, and who might other-
wise try to make everyone excited about some sensational
treatment effect that can well be ascribed to the ordinary
variation in his experiment." This circumstance is more
likely to occur when only one or two factors are being
investigated in vacuo than when they are examined in a
larger (holistic) context. In the same vein, with a holistic
philosophy, the "ordinary variations" in behavioral experi-
ments are likely to be reduced considerably when investigators
actively seek to account for the critical sources of variance
rather than trying to hide them within a massive uneconomical
replication effort.

Cochran and Cox continue by saying: "On the whole, how-
ever, tests of significance are less frequently useful in
experimental work than confidence limits." In this regard,
Box, Hunter, and Hunter (1978, p 109) state: "Significance
testing in general has been a greatly overworked procedure,
and in many cases where significance statements have been
made it would have been better to provide an interval within
which the value of the parameter would be expected to lie."

The test of statistical significance should not be
totally ignored. However, it must be put into proper per-
spective, used cautiously and properly, and given a low
priority among a number of other techniques that are
available to aid the investigator in his decisions regarding
the presence and importance of an effect.
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SECTION X

DETERMINING THE PROBABILITY OF ACCEPTING THE
NULL HYPOTHESIS WHEN IN FACT IT IS FALSE

(Applications to the interpretation of screening studies)

Since most psychological experiments are planned to
discover an effect, a difference, or a correlation, an
investigator, applying inferential statistics, is more
interested in rejecting the null hypothesis than in
accepting it. In many cases, in deciding whether the effect
observed in the sample data is real or not, he focuses
almost totally on the risk of making a Type I error and
ignores the risk of making a Type II error. That is, he
tries to minimize the chances of saying there is a
difference when, in fact, there isn't. This orientation has
caused many investigators to ignore the risk of accepting
the null hypothesis (i.e., saying there is no effect, no
difference, no correlation) when, in fact, it is false
(Type II error).

There are circumstances when, as a practical matter,
an investigator should decide to accept or reject a hypo-
thesis by weighing both risks, and more important, there
are circumstances when he should suspend judgment, i.e.,
make no decision until additional evidence has been
collected. *

There are situations, however, in which the option of
suspending judgment cannot be exercised. The investigator
must make a decision on the basis of inadequate evidence.
This can be found in an application of the lack of fit test
when a central-composite design is being employed.

By way of example, let us look at the results from a
study (North and Williges, 1971, Table 5) in which the
investigators made a decision to stop collecting more data
on the basis of their test for lack of fit. Their analysis
of variance table with the lack of fit test is shown in
Table 13. The investigators refused to reject the null
hypothesis because the probability value of the F-ratio
for the lack of fit test was only p = 0.15 and they had
established the 0.05 significance level as the critical
cut-off point. Still with only three degrees of freedom in
the term used for "error" (Replications), the test was not

very powerful one. Clearly this was a situation in which
the evidence made it difficult to make a firm decision

*Hays (1963, Chapter 9) has an excellent discussion on
hypothesis testing and interval estimation from the point
of view of the behavioral scientist.
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TABLE 13. REPRODUCTION OF NORTH AND WILLIGES' AN4ALYSIS
OF VARIANCE FOR NUMBER OF CORRECT LOCATIONS

--our-e %df Variance F P

REGRESSION (.488) C4) .90 5.97 .05

Focus .106 1 .78 5.18 .05

Density .331 1 2.44 16.19 .01

Visual Angle .011 1 .08 0.52

TV Lines .040 .30 2.00

RESIDUAL C.511) (25) .15

Blocks .001 2 .00 0.068

Lack of Fit .493 20 .18 4.301 .15

Replications .017 3 .04

TOTAL (1.000) (29)

regarding whether or not there was a fit. On the one hand,
a p =0.15 is not small enough for most psychologists to
reject the null hypothesis (although I am not sure why this
must be as strong a rule as it tends to be) . On the other
hand, there is, in fact, a sizeable lack of fit in this
example, for it accounts for nearly 50 percent of the total
performance variance while the two "significant"
experimental factors account for only 33 percent and 11 per-
cent of the total variance.

This example illustrates the dilemma that can occur
when making a Type I error is the only risk considered. The
purpose of the study was to develop an equation that best
approximated the performance data. The lack of fit test was
done to see if this had been accomplished or if more data
needed to be collected. Not rejecting the null hypotheses
-- whether or not it was verbalized that a final judgment
was being suspended -- resulted in a de facto acceptance of
the null hypothesis since no further Taita was collected to
resolve any ambiguity. 'That this was not the best solution
becomes clearer when the risk of making a Type I error
(p =0.15 in this case) is compared with the risk of making
a Type II error. Calculations show that the risk of saying
that the fit is adequate when, in fact, it isn't, is
p =0.69. Thus by failing to reject the null hypothesis
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because they did not want to risk (p = .15) making a Type I
error, they had accepted a larger risk (p = .69) of making
an error of the second kind, implicitly accepting tha null
hypothesis by not collecting more data. Had they been aware
of the size of the second probability, it is presumed the
investigators would have continued to collect more data to
improve the fit. As it stands, the derived equation
probably yields biased predictions.

WEIGHING THE RISKS IN SCREENING DESIGNS

Calculating the risk of making a Type II error can be
particularly useful when screening design are involved. Once
the results have been obtained, ordered, and plotted on
normal (or half-normal) probability paper (see Simon, 1977a),
the investigator must decide where to draw the line between
the effects that are probably real and those that are
probably due to chance. From the plots and from the data
itself, the investigator will ord narily find it easy to
make decisions regarding the very large and the very small
effects. But there are marginal effects between the two
extremes about which decisions are difficult to make.
Daniel (1976, p 416) has this to say about these marginal
effects:

"The dropping of factors from further
consideration after an early 'screening'
experiment is sometimes justified. But
it is also a very common source of serious
errors. The 28-4 may be of higher power
than much of the experimenter's previous
work, but some care must still be taken
to avoid 'Type II' errors. Such errors
can be particularly treacherous with
multi-factor experiments. For example,
one factor may be clearly dominant over
the others taken singly. But it may be
that three or four of the dropped factors,
if varied together, would have had as big
an effect as the one called dominant."

When the investigator is faced with the difficult deci-
sion of what to do with the margi il sources of variance,
several options are open to him. fie may decide that since
the effect of each marginal variable is small, if he omits
it, any equation based on the more obvious variables will
account for the major chunk of the performance variance and
that any bias from the omitted variables will be of little
practical importance. With limited resources, his main
concern initially is to account for the larger portion of
the total performance variance and to worry about marginal
sources at the time may not be cost-effective. If one
thinks of experiments within the paradigm of a multi-factor
research program (rather than as an experiment), then the
investigator expects to have the opportunity to refine his
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B) Select the significance level, a, that the
investigator will accept as the risk of making
a Type I error when rejecting the null
hypothesis.

Example: A) df = 20, = 3; B) a = .05.

Step II.

A) Obtain a table of critical values of the F-
distribution.

B) For the appropriate degrees of freedom, find
the F-value in the table associated with
the probability, = (l-a).

Example: A) One of the most complete tables of critical
values of the F-distribution was published
by D. B. Owen, Handbook of Statistical
Tables, Wesley, 1952, Section 4.1, pp 63-87.
A portion of the table from his page 66
is shown here.

Degrees of Freedom !,,r Numerator

Y 13 14 15 lb 20 24

.513 2.0:73 2.2858 2.r931 2.1101, 2.1190 2.1321 .500

.75Z 9, .3 , C 9.4'55 9..S34 '.0 20 9,591 9,6255 .750 u

.S3O 6 .903 61,073 6.,220 61), 7 ,.740 62.002 .900

.S50 2 f.469 245.37 1
1
45.95 247,32 46.01 249.05 .950 1

" 975 <7',)9 5 82.54 9 .P ,87 93 0,-6 Q3,1C 997.?5 .975
99 6125,9 647,7 6157.3 6191. 6 6 23.7 CR3.6 993 C

.'995 2450,. 24572 2-630 24767 24836 24940 ,995
0

. 00 1.3672 1.372' 1 .771 13.579 1.3933 1. 4014 500

.750 3.3997 3,&' 2.0 8 3, ?08 3,42t3 . 4345 s750

.S0 9. 4145 0,4>. 9. 47 7 9,43 8 9.4413 9,4-96 .900

.950 ]9.11,9 1 4 2 ,4 29 19,4'. 10.446 1.4,54 *950 2

.97, 39.421 3Z,'4?6 3 3 3'1 39.44 39.4 8 4 9.456 6975 0
, J92 99.,22 9 ,427 9.432 99. 443 99,449 99.458 .990
.995 199.42 199,4 199.43 199.44 199.45 199.46 .995

0
I5,3 .,2C 2 1. 271 1 .2 1.2205 1 2262 1, 22 .'00

,759 2.452 2.4137 2 .557 455 7..3 t, ? .4',26 .750
C 5, 209 7 5. 742% .20 , .. , 5 5.1764 .900

.'50 8.728i, 8.71P 8 81 7049 f,67!. 8,6602 8.63S5 .950 3 0
S 75 11-300 1 ,277 14.-53 14 1 6 1 C.17 ( 1 ,1 , 975
.90 , 26.993 26S2 3 2 6. . 6./2 2.6.693 26 :598 .990
.995 43.271 '.3.171 43.065 42.R80 42.778 42,622 4995 0'

I ri I0 1 1)0 5 1 , 3 .. 1 3 R I , I 1 , 1 5 1 7 I ,- S R , 0 0O

. 5o 2, 727 2.CP28 2G- 29 2.0' ; 20 8 2.0877 .750
.930 3.8853 3.P765 I .85 3,A . 3,5443 3.P310 .900
,'50 5.8910 5.873 5.3 P P 5 , 5.8D25 5o7741. -0 a
.S75 8.711.8 86939 A , P 5 ,5 . .8,59 P.5109 .* 75
,990 14,7406 14.24 1 4.19P 14 , 79 14.070 110929 .990
.95 20,0 2054 20. 43A 2".2 t7 20 7 20.030 .995

87



* N 7b-C - 0 ,0 -

B) *" . ,-.05) = .95, which
is Lhe p ,: I ,,:r 20 and 3 degrees
of free IiM. --s of freedom for
thU nunerat!-r An drrow points
to the Ca-[ec -.

Step ii.

A) Pr'- .d as UdliCwss

Proabiit'.

B{ t Hjt ;'. a , '

F..: amp e:

St"-ap: iv .

I by copying
provided in

,han the first

-' q the original
~. , .subseq u ent

1.00
1. 29
1.88

G , 2.66

A) S
,'" ::. . .. d (1. - t.

,.. ' :~ :t , . "h a~ o e i;

W i.,d 3 degreesL
f ) I ables (page

K,. . ; with 3 and 20



NAVTRAEQUIPCEN 78-C-0060-3

Example: For 8 .250, 20 and 3 df; look up .750, 3 & 20 df,
1.4808 and take the reciprocal = .6753.

B) Complete the four-column table.

Example: _ F X

.250 .6753 12,82 3,58

.100 .4201 20.61 4.54

Step VI.

A) Plot the values on a graph with the probabilities
(6) on the ordinate and

672 the square root of F)

on the abscissa.

B) Connect the points in a smooth curve. (A
certain degree of imprecision here can't be
avoided unless a great many more values are
plotted.)

Example: See Figure 6 for a plot of the operating
characteristic curve to be used with the
data i le 13. For the particular
F-val .,e risk of making a Type II
error c,- be estimated. (Note that the
squart uot of the F-value is used to
enter the table.)

Thus, to estimate the risk of a Type Ii
error when the F equals 4.301 (Table 13,
Lack of Fit), we look up the square root
of F (2.07) and find the associated
probability (when a = .05 and there are
20 and 3 degrees of freedom) to be .69.
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SECTION XI

TESTING NON-ADDITIVITY IN EXPERIMENTAL
DATA FROM A LATIN SQUARE DESIGN

Psychologists have made considerably more use of Latin
square designs than is warranted, often disregarding or
being unaware of the conditions that must be met before the
data can be considered unbiased and tests of statistical
significance valid. The popularity of this design rests
with its application to what is sometimes referred to as a
"within subject" design. A single subject is tested on all
experimental conditions presented to them sequentially and
by having the same number of subjects as experimental
conditions, the order of presentation can be counter-
balanced.* With eight subjects and eight conditions pre-
sented in counterbalanced orders, the Latin square is an
8 x 8 matrix. This design is actually a fractional factorial
in which the effects of three factors -- Conditions, Subjects,
and Trials -- are being examined in a two-dimensional space.
In an 8 x. 8 design, there are 63 degrees of freedom parti-
tioned into 7 for Conditions, 7 for Subjects, 7 for Trials,
with 42 left -- actually a confc, iding of interactions --
to be treated as error. This deLign is efficient therefore
only when there is, infact, no interaction of any kind among
the three sources. In human performance studies, this is
often an untenable assumption (without considerable prepara-
tion ahead of time) since it will be invalid if the subjects
learn at different rates (subject x trial interaction). Then
too interactions are often found between subjects and
conditions due to a non-linear reaction of subjects of
different abilities to tasks of different difficulties.
Because of these inherent dangers, an investigator should
obtain a rough estimate of whether or not non-additivity is
present to avoid misinterpreting his results.

Tukey (1949; 1955) provides a test for non-additivity
for matrices of data in which there is a single observation
per cell. If the test for non-additivity is statistically
significant, it suggests that the linear-by-linear inter-
action component is confounded with the main effects and
"error" variance. The test is particularly sensitive to the
non-additivity that occurs when there is a correlation be-
tween a subject's average performance and the rate at which
his performance changes relative to the change in group
performance.

*If there is an odd number of experimental conditions,
twice.as many subjects are required for counterbalancing.
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FO'icwi~i, -1, r, the *ps required to test
for this ncn-aoditIv " -'T: mployin9 a Latin
square design are g;'.

TtUKEY S ' C >F :',Ix -- , ')UARES

In i'able 14. the d .,lare with one value
per cell is presented in , n which rows are
Subjects, Columns are 7"' t ions are distributed
in a counterbalanced 11a.. . s.* The circled

numbers in the table relate tia. )rtion of the
table to the steps in the ,, -:s,-ribed below. To
perform the test for uii : '; ,,i:.in squLare,, the
fnllow1ng steos qi> _.

1. Obtain the gian.fd t::! ._'riginal data.

2. Obtain the mean ef each r w (Subject) and find
how much each da<,, -tes n ,m tho grand mean.

3. Do the same for - c-Cl: :o .iuri (Trial).

4. Do the '3ame for e t t a',',t (Letters)

5. Find the pr:dIic-t-d w3u I r each cell by
fitting the additive md',- (rarid Mean +
[the sum of the dcv-iat. Ir the row,
column, and treatmeit foi ne cell) each
with the correct signs.

6. Subtzact the c dwd observed
-I,,a1 uc in Od( h c ,-o Ih, residual in

each cell. (Arith'tc -k: These atust
sum to zero if -,l.w "umn and treatment).

7. Subtract the r-i,,d ,,ean ;each predicted
value, s(uare . . Jiff- ce and build a
new rray thes aliles. (Note:

If 'V . , . '- r ,rrfe and unwieldy,
they may be divided by a power of 10 that
reduced them in size to a who.-- number with
the oriqirral number. of siuni fi uant figures).

8. Do an analysis of variance on the array of values
r hta Lned in Step 7 and obt.cin ,he interaction

im O , -' . .f :,- ' " . (Interaction sum
of squar.+, equals t he tot : , n-o of squares minus
the coiumii sum co ,.Iuarcs :itn,., the row sum of
',(luares mi uis h. i : t, f ;' or squares)

*The data was taken from a TI- en sqpuare in Davies (1967,
p 194). The ex ,i r! i 1, ar,,d I iaheth Lage Roscoe.
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TABLE 14. EXAMPLE OF TEST OF NON-ADDITIVITY
IN A LATIN SQUARE

tI t2  t3  t4  Si S4

A B D C

x +12 +11 -13 -11 -3 -2.5
Sl k 12.5 - 7.0 -14.25 - 3.25

(x-k) - 1.5 8.0 1.25 - 7.75

B C A
- 6 +33 +34 -14 11.75 12.25

S2 - 8.0 29.5 35.75 -10.25
2.0 3.5 - 1.75 - 3.75

D A C B
- 5 - 4 -22 +28 -.75 -.25

S 3  - 9.25 5.75 -22.5 23
4.25 - 9.75 0.5 5.0

C D B A
-45 +30 -10 -15 -10 -9.5

S 4  -40.2!5 31.75 -10 -21.5

- 4.75 - 1.75 0 6.5

T. -11.25 15 - 2.75 - 3 GranTi. 
Mean

TAi --I0"75 15.5 - 2.25 - 2.5 -0.

Conditions Ci CAi

A 25.75 26.25
B -20 -19.5
C 1.75 2.25
D - 9.5 - 9.0 4

X Data -I.

TINT-XIOT S T C

EX2NTX 7444 - 986.5 - 1468.5 - 4621.5

367.5 [d.f. 15 - 9 6 Var = 61.25]
INT X Int.

(Continued)
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TABLE 14 (Cunt ini d)

y

(34 k -~ p,] It -;*. 7 6 :  V

l (x - 1.25 J .75
Prod C-{ -K.l .3.5 1 : " c. --5 ;. 9

b IA
S14.1 95.1

2.I .- 7 -3.75

I A

1580 . I i 3-). i ,ui .25 441.
4 i -.. 0/ 5

25., -1 . o- 271b

-7505 -1820.2 0 2866.5
2  369,785

Stel 7 Data-----

.X
2  

2 ,.2 X2 -
INT Y "' --

X? 7f, - _)i) - 1117218 - 14722' - 0 v443

Lx2  161023S3 cJ4 f I Var. 1610233
i NT Y -nt.

E6 9 1 .96 d.f. - 1 V23
N)N-Ar) 1b]0232 Var. .3

In- ractioi, :.x" t, 3(L7.50?

Non-Additivit-y 1 .23 .23 .00T(NS)

Remi, le r 3 67.27 73.45
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9. Multiply the value in each cell from Step 7
by its corresponding residual value from
Step 6. Sum all of these values, and square
that answer (9A).

10. Divide the squared value from Step 9A by the
value in Step 8 and obtain the sum of squares
for non-additivity with one degree or freedom.
The non-additivity variance is the same as its
sum of squares.

11. Obtain the interaction sum of squares for
array XX. (See Step 8 for the equation with
which to extimate the interaction sum.of
squares.) The degrees of freedom for this
interaction equals the total degrees of
freedom, (N - 1), minus three times the number
of degrees of freedom for treatments, (T - 1).

12. Subtract the sum of squares for the interaction
of the XX array (Step 11) to obtain the
remainder sum of squares. The remainder degrees
of freedom equals the degrees of freedom for
the interaction XX array sum of squares minus
one.

13. Obtain the remainder variance by dividing its
sum of squares (Step 12) by its degrees of
freedom (Step 12).

14. The F-test for non-additivity is made by
dividing the non-additivity variance (Step 10)
by the remainder variance (Step 13). This
will be evaluated in the conventional manner
using a standard F-distribution table for 1
and (N - 3T + 1) degrees of freedom.

If the F-value is statistically significant or the non-
additivity sum of squares accounts for a sizable proportion
of the total sum of squares, then we must be prepared to
reject the hypothesis of additivity and recognize that this
assumption (fundamental when using a Latin square) is not
being met.

What to Do?

Some may be tempted, in the face of non-additivity, to
ignore its one degree of freedom and to use the mean square
for the balance as the "error" term for significance tests.
Tukey (1949, p 237) does not recommend this. First of all,
he points out, it is more practical to express results in
additive terms since they tend to apply over a breader
region. Second, if the "error" variance is non-normally
distributed, the balance variance "unduly inflates the
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apparent signiticance of the other mean squares". In the
presence of a large non-a,.ditivitv term, Tukey suggests an
examination of the da- tc ,-(.. rrn, wether the non-
additivity is due to one >,, moxe ,uLusually discrepant values
or whether it is due to ir,-tlysis in the wrong form.

Tukey (194) proposes a graphic method to help this
decision.* For small a-oults tf !.a the technique can be
ambiguous. The reader is refeiic c to the paper for further
enlightenment. If it is decided that the non-additivity was
due to analyzing the data ir, the wrong form, then transfor-
mation of the data is in order.

GENERAL FORM OF 1'UKEI' hO ADFNO TIVI Y TEST

Tukey (1955) proviaes d g:iera -procedure for performing
the non-additivity test for any design. The steps are simple
and are listed below to enable the reader to gain insight
into what he is actually doing. To test for non-additivity
in any factorial-type desin with a single measure per cell:

1. Obtain the residual for each cell (one per
cell) . [x]

2. Square the predicted values for each cell and
treat those values as original data, and obtain
the residuals for that set of data for each
cell. (Nothiihg will be changed if a constant
is added to the p-edicted values prior to
squaring.) [y]

3. Obtain the sum or cross--pr'.ducts of values ob-
tained in steps I and 2 found in corresponding
cells. [ .xy]

4. Obtain the sum of squares Gf values obtained in
step 1. [,x2]

5. Divide the - 1.- obtained ij. step 3 by the sum ob-
tained in step 4. This is the estimated coef-
ficient (i.e., least squares estimate) for
non additivity. [Exy/Ex 2 ]

6. Square the sum obtained in step 3 and divide by
the sum obtained in step 4 to obtain the sum of
squares for non-:dditivity with one degree of
freedom (which is partitioned from the residual
sum of squares in the ANOVA table and tested as
any other source ,f variance in the ANOVA.)
(Lxy) 

2/Zx2]

*The method was developed for a row-by-column table and
will need to be modified to be applied to the Latin square.
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SECTION XII

HOW TO INCLUDE FACTORZS WITH MORE THAN TWO LEVELS

IN A SCREENING DESIGN

Screening studies are usually 2 k-p fractional factorial
designs. Two levels are used' since the goal is to identify
the critical candidate factors and not to obtain a functional
relationship. If these two goals are separated, the economy
of large-scale multifactor experiments can ordinarily be
increased (Simon, 1973, 1977a) . Onct the critical factors
have been found, additional levels m'ay be added to this
smaller number, if necessary, to study a more complex function
and response surface.

There are circumstances, however, when an investigator
may wish to study some factors at more than two levels
during the screening phase. For example, if the factor is
a qualitative (categorical) one, there is no clear-cut
method of selecting only two out a larger number of dif-
ferent categories. While the ordinary procedure would be
to select the categories believed likely to represent
extremes in performance -- this judgment being based on
life experiences or preliminary studies -- this approach may
sometimes be considered too tenuous. In that case, the
investigator may wish to include several categories in his
original screening study to obtain information regarding
each one and some clues regarding how they might interact
with other factors. If the factor is a quantitative one
and is believed to relate to performance with a U-shaped
function, selecting two points at which performance dif-
ferences are likely to be close to maximum may be less
accurate than is desired. If there is sufficient uncertain-
ty, the investigator may wish to insure himself by studying
three or four levels along the dimension.

Whatever the reason for wanting to include three or four
levels, the investigator must weigh the advantages against
the loss in data-collection economy and the increased
difficulty in interpreting the results. Certainly the
practice of having more than two levels should be used
sparingly during the screening phase.

METHODS OF INCLUDING MORE THAN TWO LEVELS

There are several ways in which factors with more-than-
two-levels might be introduced into a screening design. One
way would be to include the three-or-more level factor out-
side the basic screening plan. This means that the
screening design would be repeated at every level of the new
factor. This reduces the economy of the experiment, but
if the added data-collection effort can be tolerated, it
might be used if the factor is an important one and
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Conditions New Factor Labels

A B C D E F G

1 - - - + + + -

2 + . . . . + +

3 - + - - + - +

4 + + - + - - -

5 - - + + - +

6 + - + - + - -

7 - + + - - + -

8 + + + + + + +

A B C AB AC BC ABC

Step 2: Select any two columns (i.e., factors) plus a
third that includes the generalized interaction
as its alias.

We will use factor (columns) A and B. This forces us
to use factor D since D is aliased with the AB interaction
in the Resolution III design. In a Resolution IV design,
the third effect would be the isolated string containing
the appropriate interaction.

Step 3: Replace each unique sign pattern (in a row of signs
of the selected factors) with a symbol representing
each different level of a four-level factor.

A B D X

+ - +

- +

+ + +--6

_+

- +

+ + +

9 ()

I.. . . . . . r 1[ - " r , " ll i ii - . .. . .. . .--. .
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COLLAPSING FOUR-LEVEL FACTORS TO THREE-LEVEL FACTORS

Three-level factors are not created directly from two-
level factors. Instead, a four-level factor must first be
created through replacement and collapsed to become a
three-level factor. Addelman (1963, p 61) illustrates this
thus:

Two-level Four-level Three-Level

factor factor factor

Replacement Collapsing

++ + a a

Category 6 is changed to Category 8. For quantitative
factors, the values -1, 0 and +1 could be substituted for
the categories a, 0, and X. When the three-level factor is
introduced this way into a 2 p

- q screening design, the
Principle of Proportional Frequency guarantees that
orthogonality will be maintained.

Let us use the 4 x 24 main effect plan developed in
Steps 1 through 4 of the previous section to create a
3 x 24 main effect plan. Collapsing the four-level factor
to three levels in the manner shown above would create the
following design:
Four-level Three-level Remainder of Two-Level

factor factor factors

Collapsing

a a - + + -

8 8 - - + +

6 6 - + - +

a a- + - - +
B ) B+ +- "
- > + -+-

8 + + + +

Y C E F G
Factors
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AUGMENTING THE 3 x 2 k-p DESIGN

When multilevel factors are developed from 2 k-P designs
in the manner described, the plans remain "main effect"
designs. This means that the assumption -- it must be a
valid one -- is made that no interaction effects exist. This
assumption is generally not tenable in the behavioral
sciences and for this reason we usually insist that main
effects be isolated at least from two-factor interaction
effects.

Daniel A4276, p 229) describes how this would be done
with a 3 x 2 ~'design. He proposes that the usual reversal
of signs be made with the two-level factors -- as with the
"foldover" design -- and that for the three-level factor,
the levels would be interchanged in the following manner:

Daniel discusses the analysis of these designs if the
multilevel factor is a quantitative variable. Two dummy
variables for linear and quadratic effects would be sub-
stituted for the three-level factor. With these new
"variables", the aliases can be determined (p 226-229).

Because of ambiguity in interpretation, until more
experience is obtained, the reader should use these designs
cautiously for whatever information or clues that might be
obtained without full dependency upon the results.
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SECTION XIII

ANALYZING EXTRA-PERIOD CHANGE-OVER DESIGNS

To conserve subjects and to make more precise comparisons
among treatments, a common procedure in human engineering
experiments is to test the same subject sequentially on a series
of different experimental conditions. In practice, however, the
intended advantages of this type of design may be outweighed by
biases introduced by effects artificially created by the se-
quential presentation. Many psychologists attempt to overcome
this problem by using counterbalanced Latin square designs in
which each treatment appears once in every column (period) and
once in every row (subjects). When each treatmqnt is arranged
so that it precedes and follows every other treatment just
once, the design is referred to as a carry-over or change-over
design. In addition to being able to isolate the effects of
treatments, subjects, and periods, the change-over design
enables a residual effect carried over from the treatment
given on the previous trial to be isolated from the direct
treatment effect. Simon (1974) describes the construction
of a number of different change-over designs in his summary
of techniques for handling various sequence effects.

In the basic Latin square change-over design, estimates
of direct and residual treatments effects are not completely
independent, with the precision of residual estimates being
lower than the direct. In this case, such designs are more
useful when the main reason for isolating residual effects is
to provide an unbiased estimate of the direct effects. By
adding an additional period and repeating the last treatment
of the series given to each subject, a more balanced design
can be formed. With this "extra-period design," direct and
residual effects are independent of one another and have
approximately equal precision.

Examples of how to analyze the basic Latin square change-
over design can be found in the statistical literature rather
easily (Cochran and Cox, 1957; Federer, 1964). This is not
the case for the extra-period change-over design. Lucas (1957)
describes the analysis of the extra-period design in the
Journal of Dairy Sciences. Patterson and Lucas (1962) provide
a description in a Technical Bulletin published by the North
Carolina Agricultural Experiment Station. Cochran and Cox
(1957) provide the necessary equations but gives no numerical
example for this analysis. Because these references may be
difficult for a reader to obtain, the steps in the analysis
of the extra-period change-over design are described here,

along with a numerical example.
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ANALYZING THE RESULTS FROM AN EXTRA-PERIOD CHANGE-OVER DESIGN

In Table 15-A, an extra-period change-over design is shown
for four conditions (A through D). The balanced 4x4 Latin
square arrangement has been supplemented with an additional
period (I through V) to orthogonalize direct treatment and
residual treatment (a through d) effects. Fictitious perfor-
mance scores for each of the 20 conditions are given in
parentheses.

Some analyses have been completed and the results are given
in the margins of the design in Table 15-A:

P. = sum of all scores made in each period
e.g., PIII = 8 + 3 + 4 + 2 = 17

S. = sum of all scores made by each subject1 e.g., S2 = 1 + 6 + 3 + 4 + 2 = 16

EY = sum of all N scores = ES. = EP.1 1

Ey2 = sum of all scores after squaring each one

N = total number of conditions = nS x nP

n = number of treatments = number of subjects

In Table 15-B, results from additional preliminary analyses
are given:

T. = sum of all scores made for each treatment
1 (direct), e.g., TD = 5 + 3 + 8 + 4 + 2 = 22

Ri = sum of all scores made on the period imme-
diately following each treatment i
(residual), e.g., Ra = 6 + 4 + 4 + 5 = 19

Si - P = sum of all scores for each subject except
for that occuring in the first period,
e.g., $2 = 6 + 3 + 4 + 2 = 15

In addition, we must obtain:

R = sum of the residual values after each are
1 squared

(EY-EPI) = sum of all scores except those made
during the first period = E(Si - Pii )

In this example, since t is even, there is a single Latin
square. If t were odd, then a minimum of two squares would
be needed to create the desired balance. The letter q
equals the number of Latin squares; in our example, q = 1.
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TABLE 15. EXTRA PERIOD CHANGE-OVER DESIGN,
DATA, AND PRELIMINARY ANALYSES

Part A Residual(R)
Treatments (T)

" Performance (Y)

SUBJECTS (S)

1 2 3 4 P.1

(3) B(1) D(5) (4)

II B C A D i

aB(6) bC(6) dA(3) c (3) 18

Periods
(P) III b D (8) cA(3) aC(4) dB(2) 17

IV d C(7) a D(4) c B(2) bA(4) 17

V cC(2) dD(2) bB(1) aA(5) 10

S. 26 16 15 18 Y= 75
S7ZY

2= 353

N= 20

Part B

T. 18 12 23 22

a b c d
R. 19 19 10 14 ER2 1018

1 2 3 4 [ PI
S.-P: 23 15 10 14 (Y-EP 62

N = Total number of observations

n = t = number of conditions (treatment)
q = Number of Latin squares = 1
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In Table 16, the ancjly.is of variance is completed. Sums
of squares and degrees of freedom and variances are obtained
for the following sources cAt variance: total, periods, subjects,
direct and residual treatment effects, and error. This
differs from a conventional ai.ilysis only in the calcula-
tions for the direct and residual treatment effects, where
direct effects must be isolated from its overlap with subjects
and the residual effects must be iEolated from an overlap with
periods. These "overlaps," o, ctr rIations, can be detected
in the design shown in Table 15Ap, e.q., subject 1 has two
treatment C's but only one of all other conditions, subject 2
has two treatment D's but only one of the others, and so forth,
while no residual appe, s in peri-i 1. The magnitude of the
direct and residual treaument effects are those obtained after
eliminating the correlated portion.

In Table 17, additional equasions (found in Lucas, 1957)
are supplied for the analysis when t is odd and two Latin
squares (q = 2) are involved. The only new term here is:

Qi = sum of all values in each Latin square

When there are two, then the sum of squares, degrees of freedom
and variance must be estimated for Latin squares. New sum of
squares for periods, subjects, and error are calculated first
by the equations in Table 16, and then corrected by subtracting
the sum of squares for squares from each other source, as
shown in the equations in Table 17. These new or modified
values are then included in an analysis of variance along
with the values of the direct and residual treatment effects
which are calculated using the same equations as shown in
Table 16. The symbol Ex

2  indicates that it is the sum ofP/Q

squares for period within Latin squares; any others that
include the /Q indicate this same change in source of variance.

LIMITATION IN THE USE OF LXTRA-PERIOD CHANGE-OVER DESIGNS

These designs assume a linear model, as indicated in the
tables. Therefore, they would not be adequate if it is sus-
pected that there is an interaction between direct and residual
treatment effects. The linear model is applicable only if the,
residual effect for each treatment remains essentially
constant regardless of the treatment that follows. The DxR
interaction implies that the magnitude of a residual effect
will vary depending on which treatment follows which treatment.
In many human performance studies, particularly those involving
motor tasks, one cannot assume that the linear model is valid.

Simon (1979a) had suyqested that change-over designs might
provide a new and economical way of studying transfer of train-
ing. The few designs in the literature that are based on a DxR
model are uneconomical, requiring too many observations to
properly balance only a relatively few treatments. Efforts to
develop more economical designs for this interaction model
were not successful (Simon, 1979b, Section III).
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TAWE 16. ANALYSIS OF VARIACZ OF EXTRA-PERIOD
CNANG.-VR DISGN WAE t IS EE AND
q IS ONE LATIN SQUARE

Ex 2 1 d.f. Vax.
ToAL: EY' - (E .- [.-I]

TOTAL E o " N .

20 T

-- 0 - 82 EXTe  71.5 1 .8
PERIODS: Ep 2 _ (EY) 2  

-x 2  q[n
N N P

11-4 281.25 p x 11.5 4 2.88

SUBJECTS: Esjl 2 4E) Ex 2 qin-11

5 - 281.25 - sx 14.95 3 4.985S

DIRECT: E[(n+)(ET) - ESti - EY]2//qn(n+l)(n+2) xD (n-l]

Ta: [(5)(18) - 18 - 75]2 -[ -312 9

Tb: [(5)(12) - 15 - 752 -[-30]2 - 900

Tc: [(5)(23) - 26 - 75)2 , 1412 - 196

Td: [(5)(22) - 16 - 7512 , 1912 - 361

E -1466 Ex2  12.22 3 4.07
-4-5.6 D

RESIDUAL: ER 2 (EY-EP )2 [n-1]
i~ Ex 2qn qn R

1018 _(62)R
101 -  254.5 - 240.2 Ex 2  14.25 3 4.75
4 4 54

ERROR- Ex4 - Ex2 -EX2 _ DX _ RX E t(qpn-2Xn-1)]

71.75 - 11.5 - 14.95 - 12.22 - 14.25 = 2 2 18.83 6 3.14
E

MODEL: Ex 2  Z X2 + EX2 + EX2 + E2+ EX2
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TABLE 17. ADDITIONAL EQUATIONS FOR ANALYSIS OF VARIANCE
OF EXTRA-PERIOD CHANGE-OVER DESIGN WHEN t IS
ODD AND q IS TWO LATIN SQUARES

ADD TO ANALYSES IN TABLE 16

LATIN SQUARES (Q) d.f.

£x 2 = -QQ ([Y)qQN [q-1]

MODIFY ANALYSES IN TABLE 16

PERIODS WITHIN SQUARES (substitute for PERIODS)

Zx 2 / FXp - ix 2  [qn]
P/Q, P Q

SUBJECTS WITHIN SQUARES (substitute for SUBJECTS)

Xi .= s - EX2 Iq(n-1)]

ERROR WITHIN MULTIPLE SQUARES (substitute for ERROR)

EX2  E= X [(qn-2) (n-i]
E/Q E

MODEL Ex= EXD + EX2 + EXQ + Exp + ExS + EXE
T D R Q P/Q S/Q E/Q
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SECTION XIV

ANALYZING SERIALLY-BALANCED SEQUENCE DESIGNS

A serially-balanced sequence design is a type of change-
over design used to isolate direct treatment effects from
residual effects carried over from a preceding treatment. It
differs from the change-over designs in the preceding section
since it is balanced over a series of replicated conditions
run by a single subject rather than among a group of subjects
with subjects, trials, and treatments arranged in a Latin square
format. Sampford(1957) describes how these S.B.S. designs are
constructed and analyzed. Simon (1974), in a report summar-
i ig techniques for handling sequence effects, describes the
coistruction of these designs, but not the analysis. Since
Sampford's explanation of the analysis may be difficult for
some psychologists to follow, the method of analyzing serially
balanced sequence designs (Type 1, k = 1) is given here along
with a numerical example. The Type 1 design, like the extra-
period change-over design, balances the treatment so that
direct and residual treatment effects are orthogonal. However,
residual effects remain confounded with blocks. Isolating
block effects from estimates of residual effects creates the
only complication in the analysis. The k = 1 indicates that a
single sequence is used.

METHODS OF ANALYSIS

An example of a serially balanced sequence design is shown
in Table 18 along with fictitious performance data. Although
the conditions are arranged in a Latin square, they are actual-
ly to be presented to a single subject serially beginning with
the condition in the upper left-hand corner, moving across the
row, back to the left end of the next row, and so forth until the
lower right-hand condition is reached. The first condition
in parentheses is called a "primer" and is not used in the
calculations. It is there to provide a resa-dual effect for the
next condition. Thus, performance on the second A is the
result of the combined effects of the direct treatment effect
of A in that period, plus any effect carried over from the
primer A in the preceding period, plus any block effect.
Similarly, the performance level for the next period in the
sequence is the result of the direct effect of condition F,
the residual effect from the preceding condition A, and the
effect of Block 1.

The symbols and equations required to perform the analysis
are shown below and should be calculated in the order given.
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TABLE 18. SERIALLY BALANCED SERIAL DESIGN
WITH FICTITIOUS DATA*

(Type 1, t=6, k=l)

PRIMER

(A) A(3 )  F(8 )  B (9)  E(8 )  C(9 )  D (8) Block i

Condition D F C E A B Block 2
#1D 0 ) F( 1 2 ) (ii) (10) (8) (5)>)

B(7) A(6) C(7) F(12) D(13) Block 3

E( 1 4 ) B(1 1 ) F( 1 2) A(,,) D(9 )  C(1 1  Block 4

C( 1 1 ) B(1 0 ) D(11) A(10) E(11) F(1 Block 5

F( 1 8 ) E (1 7 ) D ( 1 5 ) B( 1 2 ) C1)A1)Block 6

Fictitious Condition
data #36

*These fictitious data were created by weighting the Treatments, Direct

and Residual, and Blocks in this way.

Let Direct Treatment A = 1 Add 1 if it follows A and Add 1 if in Block 1

B = 2 2 B " 2 " Block 2

C = 3 " 3 C " 3 " Block 3

D = 4 " 4 D " 4 " Block 4

E = 5 " 5 E " 5 , Block 5
F = 6 6 F " 6 - Block 6

Thus, Condition 1 = [A=l]+[A=l]+[Block 1=1] = 3

Condition 16 = [F=6]+[C=3]+[Block 3=3] = 12

etc.

No error component was used.
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1. N = total number of observations, yi = t2, where t is the
number of treatments.

2. G = sum of all scores = yl + Y2 + .... Yn

3. M = grand mean = G/N

4. Ti = sum of all scores for each treatment, e.g.,S TA + TA2 + .... TAt =TA

5. B. = sum of all scores for each block, e.g.,
1 11 + B 12 + .... Bit= B1 (ignoring possible residual

effects that might be present).

6. R = sum of all scores for each residual, e.g.,
1 RAl + RA 2 + .... RAt = RA (ignoring possible block

effects that might be present).

The scores for the residuals of Factor i are those
assigned to the treatments that follow the Factor i
treatment. For example, in the second block, the
score containing the residual for treatment E will
be (8), and for treatment A will be (5). Note that
the residual of the primer treatment is included here,
e.g., 3 for primer treatment A, as well as 8 for first
treatment A.

2
7. Ex = total sum of squares = E 2

G N
8.~2  treatment sum ofsquares =T

2  (G 2

2 2

9. Ex block sum of squares = EB 2B i (G)
Ignoring possible t Nresidual effects.

The only complicated part of the analysis is where residual effects
are adjusted by removing any overlap with block effects. The
following explains the steps for doing this.

10. R! residual total adjusted for block effects =

tR i - G + Bi 1 - B i

Important note: The numerical order for residuals does NOT
correspond to their alphabetical order. Instead, each
residual (and its treatment) receives the number of
the block in which it appears first. Thus, if i = 3
in our example, the R3 that goes with B3 will be RB

since both the residual and the direct effect of
Treatment B is the first one in Block 3. Where i for
R i is 2, R2 will be RD.
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11. The following is a "cookbook" description of the steps
required to estimate the resira-i effects isolated from
block effects (R). S,-- ine numerical example, page 105.

Con-'.:ucting the coefficient matrix

a. Develop a coefficient matrix with t columns and t rows
where t equals the number of treatments. Identify the
columns as follows:

Write the letter a above the first column. Then
write subsequent letters in alphabetical order,
first forward and ther reversed, enough to cover
the remaining columns in a symmetrical pattern.
For example, when t = 6, the letters for the
columns would be a, then b,.c, d, c, b; when t = 7,
the letters would be a, then b, c, d, d, c, b.

b. Write the numerical value equal to (t2-2) along the
main diagonal of the matrix (upper left to lower
right).

c. Write the number 1 in each row to the right and left
of the diagonal. Where there is no space to the left
(first row) or right (last row), the number 1 is
placed at the opposite end of that row. Put zeros in
the remaining cells.

a b c d c b
(t2_2) 1 0 0... 0 1

1t2 1t-2 0 0... 0 1
2_

1 (t 2) 21 0 ... 0 0

0 1 (t -2) 1... 0 0

0 0 0 0... (t -2) 1

1 0 0 0... 1 (t 2-2)

Writing, solving, and inverting the normal equations

d. Write the normal equations as the sum of the products
between each row coefficient and its corresponding
columnar term (letter). Only [t/2 + 1], rounded down,
of the t equations will be unique, the exact number
being the number of different letters (terms) formed
in Step lla.

e. Set the equation in the first row equal to one. Set
all of the remaining rows equal to zero.
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f. Solve for unknown terms using the usual algebraic
processes. Start with the bottom equation and work
up, substituting the value of each term as it is
determined. Be careful to maintain the correct arith-
metric signs.

g. Use the values obtained for each unknown to write the
first row of the inverted matrix by placing each value
under the appropriate term in the column designated in
Step lla.* Complete the remaining rows of the inverted
matrix by horizontally rotating the first row to the
right, one column at a time for each succeeding row.

h. To solve for the residual effects with block effects
removed, R", we multiply the vector of RI values by
the inverse coefficient matrix. To do tnis, the ele-
ments of the first row of the coefficient matrix are
multiplied by the corresponding elements of the column
of RI values and summed. This sum is divided by the
common denominator, the result will be the first element
of the RO column, i.e., R.' = R + AI 2R +... +
A ln R. Similarly, multipfication of elements from the

second row of the coefficient matrix with the corres-
ponding elements of R! values will give the second
element in the R.' vector (R). To simplify this, it

12
helps to write the t R' values in order above the
columns of the coefficient matrix. Then R!' will be the
sum of the cross product of the R! value a1d the corres-
ponding coefficient in each row, where the value of i
in R corresponds to row i in the matrix.

1

12. B = block effects with residual effects removed =

(tBi - G - tR'l + tR' )/t 2 (where Rt+ 1 = Ro)
1 1+1 l 1

2 213. (ExB + ExR,,) = composite sum of squares for block and for
residual eliminating blocks = ERiR + EBBoo

2
14. ExRo = residual sum of squares eliminating blocks

(x2 + EXR,,)- x= (Step 13) - (Step 9)
B Ro B

*Sampford (1957, p 302) provides solutions for the first
row of inverse matrices for t = 6 to 10 inclusive. These are
given in Table 19.
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TABLE 19. FIRST ROW VALUES OF INVERSE MATRIX

t 6 7 8 10

19601 105937 7380481 39424240 4517251249

-577 -2255 -119071 -499121 -46099201

17 48 1921 6319 470449

-1 -1 -31 -80 -4801

17 -1 1 1 49

-577 48 -31 1 -1

[6652801* -2255 1921 -80 49

[4974529]* -119071 6319 -4801

14573516801* -499121 470449

[3113516718]* -46099201

[442598424000]*

[*Denominators] (From Sampford, 1957, p 302)

15. Ex2 = composite total sum of squares less treatment sum of
squares, residual sum of squares (eliminating blocks),

and block sum of squares (ignoring residuals) =
2 ~ 2 2 2

EG ExT ER ExB

(Step 7) - [(Step 8)+(Step 13)j

16. Sources, sums of squares, and degrees of freedom.

Source Ex2  d.f.

Total Ex2 t2 -1

Treatments:
Direct ExT t-l

Residual ExR,, t-l

Blocks x2 t-l

Error x2 t2-3t+2

114



NAVTRAEQUIPCEN 78-C-0060-3

NUMERICAL EXAMPLE*

This numerical example follows the steps set forth in the
"Method of Analysis" section. The full design for six treatments
and the data on which this analysis is based are given in
Table 18.

1. N = t2  t = 6, N = 36

2. G = 3+8+9+8+9+10+12...+11+10 = 378

3. M = 378/36 = 10.5

4. T = 3+8+6+11+10+10 = 48
A

TB = 9+5+7+11+10+12 = 54

TC = 6 0, TD = 66, TE = 72, TF =78

5. B = 3+8+9+8+9+8 = 45

B = 10+12+11+10+8+5 = 56
2

B = 57, B = 68, B5 =69, B6 = 83

6. RA = 3+8+5+7+9+11 = 43

RB = 8+7+6+12+11+11 = 55

RC = 61, RD = 67, RE = 73, RF = 79

7. EX 2 = [32+82+92+ ...152+122+112+102] - (378)2 = 345
G 3

8 Tx T  = (48)2 +(54)2 +(60)2 +(66)2 +(72)2 (378)28. 6x = 105
T 6

9. Ex 2 = (45)2 +(56)2 +(57)2 +(68)2 +(69)2 +(83)2 _ (378)2 145B 6 T6-

10. RA = Rl, RB = R3 , RC = R 5, RD 
= R2, RE =R 4, RF 

= R6

B = B0 = B B B1, etc.1-1 0 6' 2-1 1'ec

R1 = R; = 6(43) - 378 + 83 - 45 = -82

R = R= 6(67) - 378 + 45- 56 = +13

R; = R; = -49 R = RE = +49 R 5  RC -13 R = R; +82

*This example was prepared by Dr. Howard B. Lee.
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lla,b,c. a b c d c b lld. lie.
34 1 0 0 0 1 r

1 34 1 0 0 0 34a + 2b - 1

0 1 34 1 0 0 a + 34b + c - 0
0 0 1 34 1 0 b + 34c + d - 0
0 0 0 1 34 1 (Repeats) 2c + 34d - 0
L1 0 0 0 1 34

11f.

1 2c = -34d; c -17d

2 b = -34(-17d) -d = + 577d

3 a = -34(+577d) - (17d) -19601d

4 34(-19601d) + 2(+577d) = -665280d = +1

-1
d 6652d Substitute the numerator for

d in the other equations.

Since the denominator is
constant to all terms, it
will be held out until later.

11g. -82 +13 -49 +49 -13 +87 4. R!

a b c d c b4
19601 -577 17 -1 17 -577 -82 a

1
-577 19601 -577 17 -1 17 +13 b Ro

17 -577 19601 -577 17 -1 -49 c Ro
665280 -1 17 -577 19601 -577 17 +49 d R

17 -1 17 -577 19601 -577 -13 c Rol5
-577 17 -1 17 -577 19601 +82 b Ro
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Illh R" (19601)(-I..82)+(-577) (13)+(17) (-49)+(-l) (+49)+(17) (-13)+(-577) (+82)i(A) -2. 5

665280

R -(D) (-577) (-82)+(19601)(13)+(-577) (-49)+( 17) (49)+(-1 (-13)+(17) (82).
665280

R3(S) - -1.5 N(E) - 1.5 N(C) - -.5 RZ(F) = 2.5

12. B1= [6(45) -338 - 6 (-2.5) + 6(.5)]/36 = -2.5

B = [6(56) -378 - 6(.5) + 6(-1.5) j/36 = -1.5

22B"- -.5 B" 4 .5 B = 1.5 B =2.5

13. xX2 + ] [(43) (-2.5) + (55) (-1.5) + (61) (-.5) +
[ BxR (67)(.5) + (73)(1.5) + (79) (2.5))

(45) (-2.5) + (56) (-1.5) + (57) (-.5) +
(68)(.5) + (69) (1.5) + (83) (2.5)] = 240

14. Ex2,, = 240- 145 - 95
R

15. Ex2 = 345 - [105 + 2401 = 0 [Note: While this is so for
this fictitious example, the
error would ordinarily not be
equal to zero.)

16. ANOVA Table

Source Ex2  Degrees of Freedom Variance F*

Z 2 105 5 21

Ex2. 95 5 18

Ex 2 145 5 29

Ex 2 0 20 0

*No testwas possible in this fictitious example since there was no error

variance.
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SECTION XV

DESIGN ECONOMY WHEN EXPERIMENTAL FACTORS
SELECTIVELY AFFECT BI-VARIATE CRITERIA

There can be times when some experimental factors will be
expected to affect one set of criterion measures and other
experimental factors will be expected to affect a different
set of criterion measures. In multifactor, multiple criteria
experiments, if such pairings do occur between independent
and dependent variables with infrequent overlaps, Daniel (1960)
has shown how additional economy can be achieved when 2k or
2k-p data collection patterns are employed.

Let us suppose that in the AWAVS investigation of par-
ameters for a pilot-training simulation of carrier landings,
the investigator has good reasons to believe that the Flols
display will have a significant effect on vertical deviations
from the glideslope but not the horizontal, that wind gusts
across the flight path will significantly affect horizontal
deviations but not the vertical, and that lag between responses
of the visual and motion systems will affect both measures. In
an investigation to quantify these effects, the pattern of
critical effects from the different sources of variance in a
23 factorial design would look like this:

Criteria
Source Vertical (yI Horizontal (y2)

FLOLS A X
LAG B X X

AB X
WIND C X

AC*
BC X

ABC*

An X is placed in the criterion column affected by the source to

the left. The sources with asterisks affect neither criterion.

It is apparent that the same information would be obtained
were two 22 experiments run, one to study the effects of A and B
on the vertical measure, the other to study the effects of B and
C on the horizontal measure. In each case, two main effects
and one two-factor interaction could be estimated correctly.
If this were done, however, no economy would have been achieved
by running the two four-condition experiments rather than a
Single eight-condition one.
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If we arrange the sources and effects into groups of
influence in this manner:

Yl Y2

A BC
B B AC

AB C
ABC

those familiar with aliasing in fractional factorials will
note that the effects are combined as they would be in a 23-1
fractional factorial design:

A + BC)
(B + AC)

(AB + C )

each aliased pair being associated with one degree of freedom.

In this fraction, the defining generator is:

I = ABC

;%s such, effect ABC cannot be estimated. However, since neither
it nor effect AB is believed to have a critical effect on yl or
y2, no information will be lost. Furthermore, since effects C,
AC, and BC are negligible on criterion yl, the aliasing will
not bias the estimates of A, B, and AB. Similarly, since A, AB,
and AC are believed to have negligible effects on y2, estimates
of B, C, and BC will not be biased by being aliased with them,
insofar as the second criterion is concerned. By aliasing'those
effects that do not affect the same performance criterion, we
are able to cut the size of the experiment in half. Only the
following four (out of eight) experimental conditions are needed
to complete this half-replicate design:

a, b, c, abc

The other half-fraction, I = -ABC, might have been used. This
would involve the experimental conditions: (1), ab, ac, bc.

Daniel (1960, pp 266-267) supplies the defining generators
for a number of eight- and sixteen-condition designs involving
from four to eight factors with different "influence patterns,"
i.e., 1-2-1, 2-1-2, 2-2-2, 3-0-3, 3-1-3, and 4-0-4. An

influence pattern is a notation Daniel uses to describe the
independent-dependent factor pairings when only two criteria
are involved. The influence pattern for the example described in
this section would be: 1-1-1, corresponding to the letters
A-B-C respectively. The first term indicates the number of
factors that affect only yl; the last term, the number affect-
ing only y2; and the middle term, the number affecting both
criteria.
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Since one cannot always be certain that the particular in-
fluences will occur as assumed, designs should be selected so
that the incorrectness of the assumptions might be detected. This
would seem to set the requirement that at least Resolution IV
designs should be used so that no main effects will be confounded
with any other main effects nor with two-factor interactions,
which would remain in strings. If the design is not saturated,
the characteristics of the three-factor interaction strings may
provide clues to the correctness of the assumptions and may also
serve as an estimate of error to the extent that they are negligible.

It may seem at this point that we have made a complete circle,
beginning with a new technique for effecting economy but ending up
with the same size design that one would have used anyway ina
conventional screening design with one or more criteria. This is
not quite the case. Instead, the technique provides a useful and
different way of looking at a problem in experimental design and
can be most effective and economical when the influence pattern
is well defined. It provides an additional basis for deciding
how to assign factors to the experimental design structure, which
ones to alias and which to isolate. Furthermore, with clues from
initial blocks of data available to verify initial assumptions of
influence patterns, the size of the effort required to isolate
two-factor interactions in strings for purposes of screening or
developing response surfaces will be reduced since certain comnbin-
ations will not be expected to influence either criterion.

Daniel (1960) proposes a pre-experiment analysis of the vari-
ables -- an operation that is already a part of Phase I of the
"new paradigm" (Simon, 1977b) when economical multifactor designs
are used with single criterion -- "to summarize the experimenter's
knowledge and feelings about the effects of each of K factors on
each of r Responses." He writes (p. 268):

A K x R "influence matrix" has been useful
both in aiding the statistician to under-
stand the limitations and advantages of the
experimenter's technical background, and to
record the experimenter's state of belief
before the new round of experiments is
started. Entries of -1, 0, +1 can be used
to indicate the experimenter's opinions
about the sign and magnitude of real effects.
An i can be used to indicate ignorance.

Daniel suggests that it might be helpful if criteria could be
classified according to types, for example: 1) those that
measure similar properties, in the same units, e.g., vertical
deviations from glideslope before and after training; 2) those
that measure similar or related properties, not of the same
dimensions, e.g., vertical and horizontal deviations from the
flightpath; 3) those that are based on qualitatively different
properties, e.g., cost and performance on particular simula-

tion configuration..1 121/122



NAVTRAEQUIPCEN 78-C-0060-3

REFERENCES

Addelman, S. Techniques for constructing fractional
replicate plans, J. Amer. Stat. Assoc., 1963, 58,
45-71.

Anscombe, F. J., and J. W. Tukey. The examination and
analysis of residuals, Technometrics, 1963, 5,
141-160.

Barnett, V. The ordering of multivariate data, J. Roy.

Stat. Soc., Series A, 1976, 139, 318-354.

Bakan, D. The test of significance in psychological
research, Psychological Bulletin, 1966, 66, 423-437.

Box, G. E. P. An introduction to response surface
methodology, Madison: University of Wisconsin,
Department of Statistics, Tech. Rept. #33, 1964.

Box, G. E. P., and D. R. Cox. An analysis of transforma-
tions, J. Roy. Stat. Soc., Series B, 1964, 26, 211-252.

Box, G. E. P., and J. S. Hunter. The 2
k -p fractional

factorial designs, Technometrics, 1961, 3, 311-351;
449-458.

Box, G. E. P., W. G. Hunter, and J. S. Hunter. Statistics
for experimenters, N. Y.: Wiley, 1978.

Carver, R. N. The case against statistical significance
testing, Harvard Educational Review, 1978, 48,
378-399.

Clatworthy, W. H. Tables of two associate class partially
balanced designs, National Bureau of Standards:
Applied Mathematics Series, No. 63, 1973.

Coats, W. A. A case against the normal use of inferential
statistical models in educational research, Educational
Researcher, June 1970, pp 6-7.

Cochran, W. G., and G. M. Cox. Experimental designs, New
York: Wiley, 1957 (2nd edition).

Conner, W. S., and S. Young. Fractional factorial designs
for experiments with factors at two and three levels,
U. S. Govt. Printing Office: National Bureau of
Standards Applied Mathematics Series No. 58, 1961.

Cotter, S. C. A screening design for factorial experiments
with'interactions, Biometrika, 1979, 66, 317-320.

123



NAVTRAEQUIPCEN 78-C-0060-3

Cronbach, L. J. Beyond the two disciplines of scientific
psychology, American Psychologist, 1975, 30, 116-127.

Daniel, C. Use of half-normal plots in interpreting factorial
two-level experiments, Technometrics, 1959, 1, 311-341.

Daniel, C. Parallel fractional replicates, Technometrics,
1960, 2, 263-268.

Daniel, C. Applications of statistics to industrial
experimentation, N. Y.: Wiley, 1976.

Daniel, C., and F. S. Wood. Fitting equations to data,
N. Y.: Wiley-Interscience, 1971.

Davies, 0. L. Design and analysis of industrial experiments,
(2nd ed.), New York: Hafner, 1967.

DeGray, R. J. Design for interactions, Technometrics,
1968, 10, 389-391.

Draper, N. R., and A. M. Herzberg. On lack of fit,
Technometrics, 1971, 13, 231-241.

Draper, N. R., and W. G. Hunter. Transformations: Some
examples revisited, Technometrics, 1969, 11, 23-40.

Dykstra, Jr., 0. Partial replication of response surface
designs, Technoetrics, 1960, 2, 185-195.

Dykstra, Jr., 0. The orthogonalization of undesigned
experiments, Technometrics, 1966, 8. 279-290.

Dykstra, Jr., 0. The augmentation of experimental data to
maximize /X'X/, Technometrics, 1971, 13, 682-688.

Draper, N. R., and H. Smith. Applied regression analysis,
N. Y.: Wiley, 1968.

Federer, W. T. Experimental design: Theory and application,
N. Y.: Biometrics, 1964, 20, 168-181.

Gere, J. M., and W. Weaver, Jr. Matrix algebra for engineers,
N. Y.: D. Van Nostrand, 1965.

Gnanadesikan, R. Some remarks on multivariate statistical
methods for analysis of experimental data, Industrial
Quality Control, 1963, 19, 22-6 and 31-2.

Hader, R. J., and A. H. E. Grandage. Simple and multiple
regression analyses. In Chew, V. (Ed.) Experimental
Designs in Industry, N. Y.: Wiley, 1958.

124



NAVTRAEQUIPCEN 78-C-0060-3

Hays, W. L. Statistics, N. Y.: Holt, Rinehart, and
Winston, 1963.

Hebble, T. L., and T. J. Mitchell. "Repairing" response
surface designs, Technometrics, 1972, 14, 767-779.

Hill, W. J. Statistical techniques for model building.
Ph.D. Thesis, University of Wisconsin, 1966.

Kleiter, G. The crisis of significance tests in psychology.
Jahrbuch fur Psychologie, Psychotherapie und
Medizinische Anthropolog'ie, 1969, 17, 144-163.
(Translated by D. P. Barrett, Royal-Aircraft Establish-
ment Library Translation No. 1649, The R.A.E. Library,
Q.4 BUILDING, R.A.E. Farnborough Hants, England, June 1972).

Lucas, H. L. Extra-period Latin-square change-over designs,
Journal of Dairy Sciences, 1957, 40, 225-239.

Lykken, D. T. Statistical significance in psychological
research, Psychological Bulletin, 1968, 70, 151-159.

North, R. A., and R. C. Williges. Video cartographic image
methodology, Savoy, Ill.: University of Illinois,
Aviation Research Laboratory Technical Report
ARL-71-22/AFOSR-71-8, October 1971.

Owen, D. B. Handbook of statistical tables, N. Y.:
Additon-Wesley, 1962.

Patel, M. S. Partially duplicated fractional factorial
designs, Technometrics, 1963, 5(l), 71-83.

Patterson, H. D., and H. L. Lucas. Change-over designs,
Technical Bulletin No. 147, North Carolina Agricultural
Experiment Station and United States Department of
Agriculture, September 1962.

Patterson, H. D. Quenouille's changeover designs,
Biometrika, 1973, 60, 33-45.

Plackett, R. L. Some generalizations in the multifactorial
design, Biometrika, 1946, 33, 328-332.

Roy, S., R. Gnanadesikan, and J. Srivastiva. Analysis and
design of certain quantitative multiresponse
experiments, New York: Pergamon Press, 1971.

Sampford, M. R. Methods of construction and analysis of
serially balanced sequences, J. Roy. Stat. Soc.,
Series B, 1957, 19, 286-304.

Shulman, L. S. Reconstruction of educational research,
Review of Educational Research, 1970, 49, 371-393.

125



NAVTRAEQUIPCEN 78-C-0060-

Simon, C. W. Reducing irrelevant variance through the use
of blocked experimental designs, Culver City, CA:
Hughes Aircraft Co., Tech. Rep. No. AFOSR-70-5,
November 1970a, 65pp (AD776-041).

Simon, C. W. The use of central-composite designs in human
factors engineering experiments, Culver City, CA:
Hughes Aircraft Co., Tech. Rep. No. AFOSR-70-6,
December 1970b, 52pp (AD748-277).

Simon, C. W. Considerations for the proper design and
interpretation of human factors engineering experiments,
Culver City, CA: Hughes Aircraft Co., Tech Rep.
No. P73-325, December 1971, 135 pp.

Simon, C. W. Economical multifactor'designs for human
factors engineering experiments, Culver City, CA:

Hughes Aircraft Co., Tech. Rep. No. P73-326A, June 1973,
171 pp. (AD 767-739).

Simon, C. W. Methods for handling sequence effects in human
factors engineering experiments, Culver City, CA:
Hughes Aircraft Co., Tech. Rep. No. P74-451A,
December 1974, 197 pp (AD A006-240).

Simon, C. W. Methods for improving information from
"undesiqned" human factors experiments, Culver City,
CA: Hughes Aircraft Co., Tech. Rep. No. P75-287,
July 1975a, 82 pp (AD A018 455).

Simon, C. W. Resprase surface methodology revisited;
a commentary on research strategy, Westlake Village,
CA: Canyon Research Group, Inc., Tech. Rep. No.
CWS-01-76, July 1976a, 60 pp. (AD A043-242).

Simon, C. W. Analysis of human factors engineering
experiments: characteristics, results and
applications, Westlake Village, CA: Canyon Research
Group, Inc., Tech. Rep. No. CWS-02-76, August 1976b,
104 pp. (AD A038-184)

Simon, C. W. Design, analysis, and interpretation of
screening designs for human factors engineering
research, Westlake Village, CA: Canyon Research Group,
Inc., Tech. Rep. No. CWS-03-77, September 1977a,
220 pp. (AD A036-985)

Simon, C. W. New research paradigm for applied experimental
psychology: a system approach, Westlake Village, CA:
Canyon Research Group, Inc., Tech. Rep. No. CWS-04-77,
October 1977b, 123 pp. (AD A056-984)

126



NAVTRAEQUIPCEN 78-C-0060-3

Simon, C. W. Applications of advanced experimental method-
ologies to AWAVS training research, Orlando: Naval
Training Equipment Center Tech. Rep. NAVTRAEQUIPCEN
77-C-0065-1, CWS-01-78, January 1979. (AD A064-332)

Tukey, J. W. One degree of freedom for non-additivity,
Biometrics, 1949, 5, 232-242.

Tukey, J. W. Answer to query No. 113, Biometrics, 1955,
11, 111-113.

Weinman, David G. Personal communication, Hollins College,
VA, 1979.

Williams, E. J. Experimental designs balanced for the
estimation of residual effects of treatments,
Australian Journal of Scientific Research, 1949, 2,
149-168.

Wilk, M. B., and R. Gnanadesikan. Graphical methods for
internal comparisons in multiresponse experiments,
Ann. Math. Statist., 1964, 35, 613-631.

Wilk, M. B., R. Gnanadesikan, and M. J. Huyett. Probability
plots for the gamma distribution, Technometrics, 1962,
4, 1-20.

Wood, F. S. The use of individual effects and residuals in
fitting equations to data, Technometrics, 1973, 15,
677-695.

127/128



NAVTRAEQUIPCEN 78-C-O060-3

DISTRIBUTION LIST

Naval Training Equipment Center 60 The Van Evera Library

Orlando, Florida 32813 Human Resources Research Organization

300 North Washington Street

Alexandria, Virginia 22314

Commander 3 Library
HQ, TRADOC Division of Public Documents
Attn: ATTNG-PA Government Printing Office
Ft. Monroe, Virginia 23651 Washington, D.C. 20402

Center Library 3 Director 2
Naval Personnel Research and Training Analysis & Evaluation Group
Development Center Department of the Navy

San Diego, California 92152 Orlanco, Florida 32813

Dr. Ralph R. Canter 1 HumRRO/Western Division/Carmel Office

U.S. Army Research Institute 27857 Berwick Drive
Field Unit rarmel, California 93923

P. 0. Box 16117
Fort Harrison, Indiana 46216

Document Processing Division 12 U.S. Coast Guard (G-P-1/62)
Defense Documentation Center 400 Seventh Street, SW

Cameron Station Washington, D.C. 20590

Alexandria, Virginia 22314

PERI-OU 1 JSAS Manuscript Office 3
U.S. Army Research Institute for the 1200 Seventeenth Street, NW

Behavioral & Social Sciences Washington, D.C. 20036

5001 Eisenhower Avenue

Alexandria, Virginia 22333

OASD (MRA & L)/Training 2 Personnel & Training Research Programs 3

Room 3B922, Pentagon Office of Naval Research
Washington, D.C. 20301 (Code 458)

Psychological Sciences Div.

800 N. Quincy Street
Arlington, Virginia 22217

Dr. Ralph Dusek 2 National Aviation Facilities

U.S. Army Research Institute for Experimental Center
the Behavioral and Social Sciences Library

5001 Eisenhower Avenue Atlantic City, New Jersey 08405

Alexandria, Virginia 22333

1 of 4



NAVTRAEQUIPCEN 78-C-0060-3

DISTRIBUTION LIST (cont'd)

American Psychological Assoc. 1 AFOSR/NL (Dr. A. R. Fregley)
Psyc. INFO Document Control Unit Bolling AFB
1200 Seventeenth Street, NW Washington, D.C. 20332
Washington, D.C. 20036

AFHRL Technology Office 1 Human Factors Society 2
Attn: MAJ Duncan L. Dieterly Attn: Bulletin Eqitor
NASA-Ames Research Center P. 0. Box 1369
MS 239-2 Santa Monica, California 90406
Moffett Field, California 94035

Center for Naval Analyses 1 National Defense University
Attn: Dr. R. F. Lockman Research Directorate
2000 N. Beauregard Street Ft. McNair, D.C. 20319
Alexandria, Virginia 22311

Dr. J. Huddleston 1 Commanding Officer 1
Head of Personnel Psychology Air Force Office of Scientific Research
Army Personnel Research Establishment Technical Library
c/o RAE, Farnborough Washington, D.C. 20301
Hants, ENGLAND

OUSDR&E (R&AT) (E&LS) 1 Dr. D. G. Pearce
CDR Paul R. Chatelier Behavioral Sciences Division
Room 3D129, The Pentagon Defense and Civil Institute of
Washington, D.C. 20301 Environmental Medicine

P. 0. Box 2000
Downsview, Ontario M3M, CANADA

Dr. Jesse Orlansky 1 Technical Library 1
Science and Technology Division OUSDR&E
Institute for Defense Analyses Room 30122
400 Army-Navy Drive Washington, D.C. 20301
Arlington, Virginia 22202

Chief of Naval Operations 1 Commander 2

OP-9A7R Naval Air Systems Command
Attn: Dr. R. G. Smith AIR 340F
Washington, D.C. 20350 Attn: CDR C. Hutc *ns

Washington, D.C. 20361

Scientific Technical Information 1 Chief
Office ARI Field Unit

NASA P. 0. Box 476
Washington, D.C. 20546 Ft. Rucker, Alabama 36362

2 of 4

---



NAVTRAEQUIPCEN 78-C-0060-3

DISTRIBUTION LIST (cont'd)

Chief' of Naval Operations 1 Dr. Martin Tolcott
OP-1I5 Office of Naval Research
Attn: M. K. Malehorn 800 N. Quincy Street
Washington, D.C. 20350 Department of the Navy

Arlington, Virginia 22217

Technical Library 1 Commander
Naval Training Equipment Center Naval Air Development Center
Orlando, Florida 32813 Attn: Technical Library

Warminster, Pennsylvania 18974

Chief of Naval Operations 1 Naval Research Laboratory
OP-596 Attn: Library
Washington, D.C. 20350 Washington, D.C. 20375

Commander 1 Chief of Naval Education and Training 6
Naval Air Test Center Liaison Office
CT 176 AFHRL/OTLN
Patuxent River, Maryland 20670 Williams AFB, Arizona 85224

Office of Deputy Chief of Naval 1 Dr. Donald W. Connolly
Operations Research Psychologist

Manpower,* Personnel and Training Federal Aviation Administration
(OP-Ol) FAA NAFEC ANA-230 Bldg. 3

Washington, D.C. 20350 Atlantic City, New Jersey 08405

Assistant Secretary of the Navy 1 Chief of Naval Material
Research, Engineering & Systems MAT 08D2
Washington, D.C. 20350 CP5, Room 678

Attn: Arnold I. Rubinstein
Washington, D.C. 20360

HQ Marine Corps 1 Commanding Officer
Code APC Naval Education Training Program and
Attn: LTC J. W. Biermas Development Center
Washington, D.C. 20380 Attn: Technical Library

Pensacola, Florida 32509

Chief of Naval Operations 1 Commander
OP-593B Naval Air Systems Command
Washington, D.C. 20350 Technical Library

AIR-950D
Washington, D.C. 20361

Scientific Advisor 1 Chief of Naval Education and Training 1
Headquarters U.S. Marine Corps Code OA
Washington, D.C. 20380 Pensacola, Florida 32509

3 of 4



NAVTRAEQUIPCEN 78-C-006o-3

DISTRIBUTION LIST (cont'd)

Commander 1 Dr. David C. Nagel

Pacific Missile Test Center LM-239-3
Point Mugu, California 93042 NASA Ames Research Center

Moffett Field, California 94035

Commander 1 Federal Aviation Administration

Naval Air Systems Command Technical Library

AIR 4135B Bureau Research & Development

Attn: LCDR J. H. Ashburn Washington, D.C. 20590

Washington, D.C. 20361

Commanding Officer 1 Commander

Naval Aerospace Medical Research Naval Weapons Center

Laboratory Human Factors Branch (Code 3194)

Code L5 Attn: Mr. Ronald A. Erickson

Department of Psychology China Lake, California 93555

Pensacola, Florida 32512

Dr. Thomas Longridge 1 CDR Robert S. Kennedy

AFHRL/OTR Officer in Charge
Williams AFB, Arizona 852214 Naval Aerospace Medical Research

Laboratory
Box 29407

New Orleans, Louisiana 70189

Dr. Kenneth Boff 1 Dr. J. D. Fletcher

ARAMRL/HEA Defense Adv. Research Projects Agency

Wright Patterson AFB (CTO)

Ohio 45433 1400 Wilson Boulevard

Arlington, Virginia 22209

CAPT James Goodson 1 Mr. Robert Wright

Code L-53 Aeromechanics Lab

Naval Aerospace Medical Research (USAAVRADCOM)

Laboratory Ames Research Ctr, MS 239-2

Pensacola, Florida 32512 Moffett Field, California 94035

Major Jack Thorpe 1 Lt Col Jefferson Koonce

AFOSR/NL USAFA/DFBL

Bolling AFB, D.C. 20332 USAF Academy, Colorado 80840

Dr. Will Bickley 1 CDR Norman E. Lane

USARI Field Unit Code 602

P. 0. Box 476 Human Factors Engineering Division

Fort Rucker, Alabama 36362 Naval Air Development Center

Warminster, Pennsylvania 18974

AFHRL/TSZ 2

Brooks AFB, Texas 78235
4 of 4




